35 research outputs found

    Identifying and correcting epigenetics measurements for systematic sources of variation

    Get PDF
    Abstract Background Methylation measures quantified by microarray techniques can be affected by systematic variation due to the technical processing of samples, which may compromise the accuracy of the measurement process and contribute to bias the estimate of the association under investigation. The quantification of the contribution of the systematic source of variation is challenging in datasets characterized by hundreds of thousands of features. In this study, we introduce a method previously developed for the analysis of metabolomics data to evaluate the performance of existing normalizing techniques to correct for unwanted variation. Illumina Infinium HumanMethylation450K was used to acquire methylation levels in over 421,000 CpG sites for 902 study participants of a case-control study on breast cancer nested within the EPIC cohort. The principal component partial R-square (PC-PR2) analysis was used to identify and quantify the variability attributable to potential systematic sources of variation. Three correcting techniques, namely ComBat, surrogate variables analysis (SVA) and a linear regression model to compute residuals were applied. The impact of each correcting method on the association between smoking status and DNA methylation levels was evaluated, and results were compared with findings from a large meta-analysis. Results A sizeable proportion of systematic variability due to variables expressing ‘batch’ and ‘sample position’ within ‘chip’ was identified, with values of the partial R2 statistics equal to 9.5 and 11.4% of total variation, respectively. After application of ComBat or the residuals’ methods, the contribution was 1.3 and 0.2%, respectively. The SVA technique resulted in a reduced variability due to ‘batch’ (1.3%) and ‘sample position’ (0.6%), and in a diminished variability attributable to ‘chip’ within a batch (0.9%). After ComBat or the residuals’ corrections, a larger number of significant sites (k = 600 and k = 427, respectively) were associated to smoking status than the SVA correction (k = 96). Conclusions The three correction methods removed systematic variation in DNA methylation data, as assessed by the PC-PR2, which lent itself as a useful tool to explore variability in large dimension data. SVA produced more conservative findings than ComBat in the association between smoking and DNA methylation

    Lifestyle correlates of eight breast cancerrelated metabolites: a cross-sectional study within the EPIC cohort

    Get PDF
    This work was funded by the French National Cancer Institute (grant number 2015-166). Mathilde His' work reported here was undertaken during the tenure of a postdoctoral fellowship awarded by the International Agency for Research on Cancer, financed by the Fondation ARC. The coordination of EPIC is financially supported by International Agency for Research on Cancer (IARC) and also by the Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, which has additional infrastructure support provided by the NIHR Imperial Biomedical Research Centre (BRC). The national cohorts are supported by Danish Cancer Society (Denmark); Ligue Contre le Cancer, Institut Gustave Roussy, Mutuelle Generale de l'Education Nationale, Institut National de la Sante et de la Recherche Medicale (INSERM) (France); German Cancer Aid, German Cancer Research Center (DKFZ), German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Federal Ministry of Education and Research (BMBF) (Germany); Associazione Italiana per la Ricerca sul Cancro-AIRC-Italy, Compagnia di SanPaolo and National Research Council (Italy); Dutch Ministry of Public Health, Welfare and Sports (VWS), LK Research Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), World Cancer Research Fund (WCRF) (The Netherlands); Health Research Fund (FIS) - Instituto de Salud Carlos III (ISCIII), Regional Governments of Andalucia, Asturias, Basque Country, Murcia and Navarra, and the Catalan Institute of Oncology-ICO (Spain); Swedish Cancer Society, Swedish Research Council and County Councils of Skane and Vasterbotten (Sweden); and Cancer Research UK (14136 to EPIC-Norfolk (DOI 10.22025/2019.10.105.00004); C8221/A29017 to EPIC-Oxford), Medical Research Council (1000143, MR/N003284/1, MC-UU_12015/1 and MC_UU_00006/1 to EPIC-Norfolk; MR/M012190/1 to EPIC-Oxford) (UK). The funders were not involved in designing the study; collecting, analyzing, or interpreting the data; or writing or submitting the manuscript for publication.Background: Metabolomics is a promising molecular tool for identifying novel etiological pathways leading to cancer. In an earlier prospective study among pre- and postmenopausal women not using exogenous hormones, we observed a higher risk of breast cancer associated with higher blood concentrations of one metabolite (acetylcarnitine) and a lower risk associated with higher blood concentrations of seven others (arginine, asparagine, phosphatidylcholines (PCs) aa C36:3, ae C34:2, ae C36:2, ae C36:3, and ae C38:2). Methods: To identify determinants of these breast cancer-related metabolites, we conducted a cross-sectional analysis to identify their lifestyle and anthropometric correlates in 2358 women, who were previously included as controls in case-control studies nested within the European Prospective Investigation into Cancer and Nutrition cohort and not using exogenous hormones at blood collection. Associations of each metabolite concentration with 42 variables were assessed using linear regression models in a discovery set of 1572 participants. Significant associations were evaluated in a validation set (n = 786). Results: For the metabolites previously associated with a lower risk of breast cancer, concentrations of PCs ae C34: 2, C36:2, C36:3, and C38:2 were negatively associated with adiposity and positively associated with total and saturated fat intakes. PC ae C36:2 was also negatively associated with alcohol consumption and positively associated with two scores reflecting adherence to a healthy lifestyle. Asparagine concentration was negatively associated with adiposity. Arginine and PC aa C36:3 concentrations were not associated to any of the factors examined. For the metabolite previously associated with a higher risk of breast cancer, acetylcarnitine, a positive association with age was observed. Conclusions: These associations may indicate possible mechanisms underlying associations between lifestyle and anthropometric factors, and risk of breast cancer. Further research is needed to identify potential non-lifestyle correlates of the metabolites investigated.Institut National du Cancer (INCA) France 2015-166International Agency for Research on Cancer - Fondation ARCWorld Health OrganizationDepartment of Epidemiology and Biostatistics, School of Public Health, Imperial College LondonDanish Cancer SocietyLigue Contre le Cancer (France)Institut Gustave Roussy (France)Mutuelle Generale de l'Education Nationale (France)Institut National de la Sante et de la Recherche Medicale (Inserm)Deutsche KrebshilfeGerman Cancer Research Center (DKFZ) (Germany)German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE) (Germany)Federal Ministry of Education & Research (BMBF)Fondazione AIRC per la ricerca sul cancroCompagnia di San PaoloConsiglio Nazionale delle Ricerche (CNR)Netherlands GovernmentWorld Cancer Research Fund International (WCRF)Health Research Fund (FIS) - Instituto de Salud Carlos III (ISCIII) (Spain)Junta de AndaluciaRegional Government of Asturias (Spain)Regional Government of Basque Country (Spain)Regional Government of Murcia (Spain)Regional Government of Navarra (Spain)Catalan Institute of Oncology-ICO (Spain)Swedish Cancer SocietySwedish Research CouncilCounty Council of Skane (Sweden)County Council of Vasterbotten (Sweden)Cancer Research UK 14136 C8221/A29017UK Research & Innovation (UKRI)Medical Research Council UK (MRC) 1000143 MR/N003284/1 MC-UU_12015/1 MC_UU_00006/1 MR/M012190/

    Association of selenoprotein and selenium pathway gnotypes with risk of colorectal cancer and interaction with selenium status

    Get PDF
    Selenoprotein genetic variations and suboptimal selenium (Se) levels may contribute to the risk of colorectal cancer (CRC) development. We examined the association between CRC risk and genotype for single nucleotide polymorphisms (SNPs) in selenoprotein and Se metabolic pathway genes. Illumina Goldengate assays were designed and resulted in the genotyping of 1040 variants in 154 genes from 1420 cases and 1421 controls within the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Multivariable logistic regression revealed an association of 144 individual SNPs from 63 Se pathway genes with CRC risk. However, regarding the selenoprotein genes, only TXNRD1 rs11111979 retained borderline statistical significance after adjustment for correlated tests (PACT = 0.10; PACT significance threshold was P < 0.1). SNPs in Wingless/Integrated (Wnt) and Transforming growth factor (TGF) beta-signaling genes (FRZB, SMAD3, SMAD7) from pathways affected by Se intake were also associated with CRC risk after multiple testing adjustments. Interactions with Se status (using existing serum Se and Selenoprotein P data) were tested at the SNP, gene, and pathway levels. Pathway analyses using the modified Adaptive Rank Truncated Product method suggested that genes and gene x Se status interactions in antioxidant, apoptosis, and TGF-beta signaling pathways may be associated with CRC risk. This study suggests that SNPs in the Se pathway alone or in combination with suboptimal Se status may contribute to CRC development

    Predicted basal metabolic rate and cancer risk in the European Prospective Investigation into Cancer and Nutrition

    Get PDF
    Emerging evidence suggests that a metabolic profile associated with obesity may be a more relevant risk factor for some cancers than adiposity per se. Basal metabolic rate (BMR) is an indicator of overall body metabolism and may be a proxy for the impact of a specific metabolic profile on cancer risk. Therefore, we investigated the association of predicted BMR with incidence of 13 obesity-related cancers in the European Prospective Investigation into Cancer and Nutrition (EPIC). BMR at baseline was calculated using the WHO/FAO/UNU equations and the relationships between BMR and cancer risk were investigated using multivariable Cox proportional hazards regression models. A total of 141,295 men and 317,613 women, with a mean follow-up of 14 years were included in the analysis. Overall, higher BMR was associated with a greater risk for most cancers that have been linked with obesity. However, among normal weight participants, higher BMR was associated with elevated risks of esophageal adenocarcinoma (hazard ratio per 1-standard deviation change in BMR [HR1-SD]: 2.46; 95% CI 1.20; 5.03) and distal colon cancer (HR1-SD: 1.33; 95% CI 1.001; 1.77) among men and with proximal colon (HR1-SD: 1.16; 95% CI 1.01; 1.35), pancreatic (HR1-SD: 1.37; 95% CI 1.13; 1.66), thyroid (HR1-SD: 1.65; 95% CI 1.33; 2.05), postmenopausal breast (HR1-SD: 1.17; 95% CI 1.11; 1.22) and endometrial (HR1-SD: 1.20; 95% CI 1.03; 1.40) cancers in women. These results indicate that higher BMR may be an indicator of a metabolic phenotype associated with risk of certain cancer types, and may be a useful predictor of cancer risk independent of body fatness

    Prospective analysis of circulating metabolites and breast cancer in EPIC

    Get PDF
    Background: Metabolomics is a promising molecular tool to identify novel etiologic pathways leading to cancer. Using a targeted approach, we prospectively investigated the associations between metabolite concentrations in plasma and breast cancer risk. Methods: A nested case-control study was established within the European Prospective Investigation into Cancer cohort, which included 1624 first primary incident invasive breast cancer cases (with known estrogen and progesterone receptor and HER2 status) and 1624 matched controls. Metabolites (n = 127, acylcarnitines, amino acids, biogenic amines, glycerophospholipids, hexose, sphingolipids) were measured by mass spectrometry in pre-diagnostic plasma samples and tested for associations with breast cancer incidence using multivariable conditional logistic regression. Results: Among women not using hormones at baseline (n = 2248), and after control for multiple tests, concentrations of arginine (odds ratio [OR] per SD = 0.79, 95% confidence interval [CI] = 0.70-0.90), asparagine (OR = 0.83 (0.74-0.92)), and phosphatidylcholines (PCs) ae C36:3 (OR = 0.83 (0.76-0.90)), aa C36:3 (OR = 0.84 (0.77-0.93)), ae C34:2 (OR = 0.85 (0.78-0.94)), ae C36:2 (OR = 0.85 (0.78-0.88)), and ae C38:2 (OR = 0.84 (0.76-0.93)) were inversely associated with breast cancer risk, while the acylcarnitine C2 (OR = 1.23 (1.11-1.35)) was positively associated with disease risk. In the overall population, C2 (OR = 1.15 (1.06-1.24)) and PC ae C36:3 (OR = 0.88 (0.82-0.95)) were associated with risk of breast cancer, and these relationships did not differ by breast cancer subtype, age at diagnosis, fasting status, menopausal status, or adiposity. Conclusions: These findings point to potentially novel pathways and biomarkers of breast cancer development. Results warrant replication in other epidemiological studies

    Socioeconomic position, lifestyle habits and biomarkers of epigenetic aging : a multi-cohort analysis

    Get PDF
    Differences in health status by socioeconomic position (SEP) tend to be more evident at older ages, suggesting the involvement of a biological mechanism responsive to the accumulation of deleterious exposures across the lifespan. DNA methylation (DNAm) has been proposed as a biomarker of biological aging that conserves memory of endogenous and exogenous stress during life.We examined the association of education level, as an indicator of SEP, and lifestyle-related variables with four biomarkers of age-dependent DNAm dysregulation: the total number of stochastic epigenetic mutations (SEMs) and three epigenetic clocks (Horvath, Hannum and Levine), in 18 cohorts spanning 12 countries.The four biological aging biomarkers were associated with education and different sets of risk factors independently, and the magnitude of the effects differed depending on the biomarker and the predictor. On average, the effect of low education on epigenetic aging was comparable with those of other lifestyle-related risk factors (obesity, alcohol intake), with the exception of smoking, which had a significantly stronger effect.Our study shows that low education is an independent predictor of accelerated biological (epigenetic) aging and that epigenetic clocks appear to be good candidates for disentangling the biological pathways underlying social inequalities in healthy aging and longevity

    Haem iron intake and risk of lung cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort

    Get PDF
    Background Epidemiological studies suggest that haem iron, which is found predominantly in red meat and increases endogenous formation of carcinogenic N-nitroso compounds, may be positively associated with lung cancer. The objective was to examine the relationship between haem iron intake and lung cancer risk using detailed smoking history data and serum cotinine to control for potential confounding. Methods In the European Prospective Investigation into Cancer and Nutrition (EPIC), 416,746 individuals from 10 countries completed demographic and dietary questionnaires at recruitment. Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for incident lung cancer (n = 3731) risk relative to haem iron, non-haem iron, and total dietary iron intake. A corresponding analysis was conducted among a nested subset of 800 lung cancer cases and 1489 matched controls for whom serum cotinine was available. Results Haem iron was associated with lung cancer risk, including after adjustment for details of smoking history (time since quitting, number of cigarettes per day): as a continuous variable (HR per 0.3 mg/1000 kcal 1.03, 95% CI 1.00-1.07), and in the highest versus lowest quintile (HR 1.16, 95% CI 1.02-1.32; trend across quintiles: P = 0.035). In contrast, non-haem iron intake was related inversely with lung cancer risk; however, this association attenuated after adjustment for smoking history. Additional adjustment for serum cotinine did not considerably alter the associations detected in the nested case-control subset. Conclusions Greater haem iron intake may be modestly associated with lung cancer risk.Peer reviewe

    Gene expression in blood reflects smoking exposure among cancer-free women in the Norwegian Women and Cancer (NOWAC) postgenome cohort

    Get PDF
    Abstract Active smoking has been linked to modulated gene expression in blood. However, there is a need for a more thorough understanding of how quantitative measures of smoking exposure relate to differentially expressed genes (DEGs) in whole-blood among ever smokers. This study analysed microarray-based gene expression profiles from whole-blood samples according to smoking status and quantitative measures of smoking exposure among cancer-free women (n = 1708) in the Norwegian Women and Cancer postgenome cohort. When compared with never smokers and former smokers, current smokers had 911 and 1082 DEGs, respectively and their biological functions could indicate systemic impacts of smoking. LRRN3 was associated with smoking status with the lowest FDR-adjusted p-value. When never smokers and all former smokers were compared, no DEGs were observed, but LRRN3 was differentially expressed when never smokers were compared with former smokers who quit smoking ≀ 10 years ago. Further, LRRN3 was positively associated with smoking intensity, pack-years, and comprehensive smoking index score among current smokers; and negatively associated with time since cessation among former smokers. Consequently, LRRN3 expression in whole-blood is a molecular signal of smoking exposure that could supplant self-reported smoking data in further research targeting blood-based markers related to the health effects of smoking

    Transcriptomic signals in blood prior to lung cancer focusing on time to diagnosis and metastasis

    Get PDF
    Recent studies have indicated that there are functional genomic signals that can be detected in blood years before cancer diagnosis. This study aimed to assess gene expression in prospective blood samples from the Norwegian Women and Cancer cohort focusing on time to lung cancer diagnosis and metastatic cancer using a nested case–control design. We employed several approaches to statistically analyze the data and the methods indicated that the case–control differences were subtle but most distinguishable in metastatic case–control pairs in the period 0–3 years prior to diagnosis. The genes of interest along with estimated blood cell populations could indicate disruption of immunological processes in blood. The genes identified from approaches focusing on alterations with time to diagnosis were distinct from those focusing on the case–control differences. Our results support that explorative analyses of prospective blood samples could indicate circulating signals of disease-related processes
    corecore