70 research outputs found
Many-body current formula and current conservation for non-equilibrium fully interacting nanojunctions
We consider the electron transport properties through fully interacting
nanoscale junctions beyond the linear-response regime. We calculate the current
flowing through an interacting region connected to two interacting leads, with
interaction crossing at the left and right contacts, by using a non-equilibrium
Green's functions (NEGF) technique. The total current at one interface (the
left one for example) is made of several terms which can be regrouped into two
sets. The first set corresponds to a very generalised Landauer-like current
formula with physical quantities defined only in the interacting central region
and with renormalised lead self-energies. The second set characterises
inelastic scattering events occurring in the left lead. We show how this term
can be negligible or even vanish due to the pseudo-equilibrium statistical
properties of the lead in the thermodynamic limit. The expressions for the
different Green's functions needed for practical calculations of the current
are also provided. We determine the constraints imposed by the physical
condition of current conservation. The corresponding equation imposed on the
different self-energy quantities arising from the current conservation is
derived. We discuss in detail its physical interpretation and its relation with
previously derived expressions. Finally several important key features are
discussed in relation to the implementation of our formalism for calculations
of quantum transport in realistic systems
Tetrazole as a Replacement of the Electrophilic Group in Characteristic Prolyl Oligopeptidase Inhibitors
4-Phenylbutanoyl-aminoacyl-2(S)-tetrazolylpyrrolidines were studied as prolyl oligopeptidase inhibitors. The compounds were more potent than expected from the assumption that the tetrazole would also here be a bioisostere of the carboxylic acid group and the corresponding carboxylic acids are at their best only weak inhibitors. The aminoacyl groups L-prolyl and L-alanyl gave potent inhibitors with IC50 values of 12 and 129 nM, respectively. This was in line with typical prolyl oligopeptidase inhibitors; however, we did observe a difference with N-methyl-L-alanyl, which gave potent inhibitors in typical prolyl oligopeptidase inhibitors but not in our novel compound series. Furthermore, all studied 4-phenylbutanoyl-aminoacyl-2(S)-tetrazolylpyrrolidines decreased alpha-synuclein dimerization at the concentration of 10 mu M, also when they were only weak inhibitors of the proteolytic activity of the enzyme with an IC50 value of 205 mu M. Molecular docking studies revealed that the compounds are likely to bind differently to the enzyme compared to typical prolyl oligopeptidase inhibitors represented in this study by 4-phenylbutanoyl-aminoacyl-2(S)-cyanopyrrolidines.Peer reviewe
Removal of proteinase K resistant alpha Syn species does not correlate with cell survival in a virus vector-based Parkinson's disease mouse model
Parkinson's disease (PD) is characterized by degeneration of nigrostriatal dopaminergic neurons and accumu-lation of alpha-synuclein (alpha Syn) as Lewy bodies. Currently, there is no disease-modifying therapy available for PD. We have shown that a small molecular inhibitor for prolyl oligopeptidase (PREP), KYP-2047, relieves alpha Syn-induced toxicity in various PD models by inducing autophagy and preventing alpha Syn aggregation. In this study, we wanted to study the effects of PREP inhibition on different alpha Syn species by using cell culture and in vivo models.We used Neuro2A cells with transient alpha Syn overexpression and oxidative stress or proteasomal inhibition -induced alpha Syn aggregation to assess the effect of KYP-2047 on soluble alpha Syn oligomers and on cell viability. Here, the levels of soluble alpha Syn were measured by using ELISA, and the impact of KYP-2047 was compared to anle138b, nilotinib and deferiprone. To evaluate the effect of KYP-2047 on alpha Syn fibrillization in vivo, we used unilateral nigral AAV1/2-A53T-alpha Syn mouse model, where the KYP-2047 treatment was initiated two-or four -weeks post injection.KYP-2047 and anle138b protected cells from alpha Syn toxicity but interestingly, KYP-2047 did not reduce soluble alpha Syn oligomers. In AAV-A53T-alpha Syn mouse model, KYP-2047 reduced significantly proteinase K-resistant alpha Syn oligomers and oxidative damage related to alpha Syn aggregation. However, the KYP-2047 treatment that was initiated at the time of symptom onset, failed to protect the nigrostriatal dopaminergic neurons. Our results emphasize the importance of whole alpha Syn aggregation process in the pathology of PD and raise an important question about the forms of alpha Syn that are reasonable targets for PD drug therapy.Peer reviewe
Finite elements and the discrete variable representation in nonequilibrium Green's function calculations. Atomic and molecular models
In this contribution, we discuss the finite-element discrete variable
representation (FE-DVR) of the nonequilibrium Green's function and its
implications on the description of strongly inhomogeneous quantum systems. In
detail, we show that the complementary features of FEs and the DVR allows for a
notably more efficient solution of the two-time Schwinger/Keldysh/Kadanoff-Baym
equations compared to a general basis approach. Particularly, the use of the
FE-DVR leads to an essential speedup in computing the self-energies.
As atomic and molecular examples we consider the He atom and the linear
version of H in one spatial dimension. For these closed-shell models we,
in Hartree-Fock and second Born approximation, compute the ground-state
properties and compare with the exact findings obtained from the solution of
the few-particle time-dependent Schr\"odinger equation.Comment: 12 pages, 3 figures, submitted as proceedings of conference "PNGF IV
Prolyl oligopeptidase inhibition by KYP-2407 increases alpha-synuclein fibril degradation in neuron-like cells
Growing evidence emphasizes insufficient clearance of pathological alpha-synuclein (alpha SYN) aggregates in the progression of Parkinson's disease (PD). Consequently, cellular degradation pathways represent a potential therapeutic target. Prolyl oligopeptidase (PREP) is highly expressed in the brain and has been suggested to increase alpha SYN aggregation and negatively regulate the autophagy pathway. Inhibition of PREP with a small molecule inhibitor, KYP-2407, stimulates autophagy and reduces the oligomeric species of alpha SYN aggregates in PD mouse models. However, whether PREP inhibition has any effects on intracellular alpha SYN fibrils has not been studied before. In this study, the effect of KYP2407 on alpha SYN preformed fibrils (PFFs) was tested in SH-SY5Y cells and human astmcytes. Immunostaining analysis revealed that both cell types accumulated alpha SYN PFFs intracellularly but KYP-2047 decreased intracellular alpha SYN deposits only in SH-SY5Y cells, as astrocytes did not show any PREP activity. Western blot analysis confirmed the reduction of high molecular weight alpha SYN species in SH-SY5Y cell lysates, and secretion of aSYN from SH-SY5Y cells also decreased in the presence of KYP-2407. Accumulation of alpha SYN inside the SH-SY5Y cells resulted in an increase of the auto-lysosomal proteins p62 and LC3BII, as well as calpain 1 and 2, which have been shown to be associated with PD pathology. Notably, treatment with KYP-2407 significantly reduced p62 and LC3BII levels, indicating an increased autophagic flux, and calpain 1 and 2 levels returned to normal in the presence of KYP-2407. Our findings indicate that PREP inhibition can potentially be used as therapy to reduce the insoluble intracellular alpha SYN aggregates
Nonequilibrium Green function approach to photoionization processes in atoms
We present a quantum kinetic approach for the time-resolved description of
many-body effects in photoionization processes in atoms. The method is based on
the non-equilibrium Green functions formalism and solves the
Keldysh/Kadanoff-Baym equations in second Born approximation. An approximation
scheme is introduced and discussed, which provides a complete single-particle
description of the continuum, while the atom is treated fully correlated.Comment: 11 pages, 6 figure
2-Imidazole as a Substitute for the Electrophilic Group Gives Highly Potent Prolyl Oligopeptidase Inhibitors
Different five-membered nitrogen-containing heteroaromatics in the position of the typical electrophilic group in prolyl oligopeptidase (PREP) inhibitors were investigated and compared to tetrazole. The 2-imidazoles were highly potent inhibitors of the proteolytic activity. The binding mode for the basic imidazole was studied by molecular docking as it was expected to differ from the acidic tetrazole. A new putative noncovalent binding mode with an interaction to His680 was found for the 2-imidazoles. Inhibition of the proteolytic activity did not correlate with the modulating effect on protein-protein-interaction-derived functions of PREP (i.e., dimerization of alpha-synuclein and autophagy). Among the highly potent PREP inhibiting 2-imidazoles, only one was also a potent modulator of PREP-catalyzed alpha-synuclein dimerization, indicating that the linker length on the opposite side of the molecule from the five-membered heteroaromatic is critical for the disconnected structure-activity relationships
No evidence that protein truncating variants in BRIP1 are associated with breast cancer risk: implications for gene panel testing.
BACKGROUND: BRCA1 interacting protein C-terminal helicase 1 (BRIP1) is one of the Fanconi Anaemia Complementation (FANC) group family of DNA repair proteins. Biallelic mutations in BRIP1 are responsible for FANC group J, and previous studies have also suggested that rare protein truncating variants in BRIP1 are associated with an increased risk of breast cancer. These studies have led to inclusion of BRIP1 on targeted sequencing panels for breast cancer risk prediction. METHODS: We evaluated a truncating variant, p.Arg798Ter (rs137852986), and 10 missense variants of BRIP1, in 48 144 cases and 43 607 controls of European origin, drawn from 41 studies participating in the Breast Cancer Association Consortium (BCAC). Additionally, we sequenced the coding regions of BRIP1 in 13 213 cases and 5242 controls from the UK, 1313 cases and 1123 controls from three population-based studies as part of the Breast Cancer Family Registry, and 1853 familial cases and 2001 controls from Australia. RESULTS: The rare truncating allele of rs137852986 was observed in 23 cases and 18 controls in Europeans in BCAC (OR 1.09, 95% CI 0.58 to 2.03, p=0.79). Truncating variants were found in the sequencing studies in 34 cases (0.21%) and 19 controls (0.23%) (combined OR 0.90, 95% CI 0.48 to 1.70, p=0.75). CONCLUSIONS: These results suggest that truncating variants in BRIP1, and in particular p.Arg798Ter, are not associated with a substantial increase in breast cancer risk. Such observations have important implications for the reporting of results from breast cancer screening panels.The COGS project is funded through a European Commission's Seventh Framework Programme grant
(agreement number 223175 - HEALTH-F2-2009-223175). BCAC is funded by Cancer Research UK
[C1287/A10118, C1287/A12014] and by the European Community´s Seventh Framework Programme under
grant agreement number 223175 (grant number HEALTH-F2-2009-223175) (COGS). Funding for the iCOGS
infrastructure came from: the European Community's Seventh Framework Programme under grant agreement
n° 223175 (HEALTH-F2-2009-223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A 10710,
C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692, C8197/A16565), the
National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19
16
CA148065 and 1U19 CA148112 - the GAME-ON initiative), the Department of Defense (W81XWH-10-1-
0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast
Cancer, Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer
Research Fund. This study made use of data generated by the Wellcome Trust Case Control consortium.
Funding for the project was provided by the Wellcome Trust under award 076113. The results published here
are in part based upon data generated by The Cancer Genome Atlas Project established by the National Cancer
Institute and National Human Genome Research Institute.This is the author accepted manuscript. The final version is available from BMJ Group at http://dx.doi.org/10.1136/jmedgenet-2015-103529
Fine-Scale Mapping of the 4q24 Locus Identifies Two Independent Loci Associated with Breast Cancer Risk
Background: A recent association study identified a common variant (rs9790517) at 4q24 to be associated with breast cancer risk. Independent association signals and potential functional variants in this locus have not been explored.
Methods: We conducted a fine-mapping analysis in 55,540 breast cancer cases and 51,168 controls from the Breast Cancer Association Consortium.
Results: Conditional analyses identified two independent association signals among women of European ancestry, represented by rs9790517 [conditional P = 2.51 × 10−4; OR, 1.04; 95% confidence interval (CI), 1.02–1.07] and rs77928427 (P = 1.86 × 10−4; OR, 1.04; 95% CI, 1.02–1.07). Functional annotation using data from the Encyclopedia of DNA Elements (ENCODE) project revealed two putative functional variants, rs62331150 and rs73838678 in linkage disequilibrium (LD) with rs9790517 (r2 ≥ 0.90) residing in the active promoter or enhancer, respectively, of the nearest gene, TET2. Both variants are located in DNase I hypersensitivity and transcription factor–binding sites. Using data from both The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), we showed that rs62331150 was associated with level of expression of TET2 in breast normal and tumor tissue.
Conclusion: Our study identified two independent association signals at 4q24 in relation to breast cancer risk and suggested that observed association in this locus may be mediated through the regulation of TET2.
Impact: Fine-mapping study with large sample size warranted for identification of independent loci for breast cancer risk
Common non-synonymous SNPs associated with breast cancer susceptibility: findings from the Breast Cancer Association Consortium.
Candidate variant association studies have been largely unsuccessful in identifying common breast cancer susceptibility variants, although most studies have been underpowered to detect associations of a realistic magnitude. We assessed 41 common non-synonymous single-nucleotide polymorphisms (nsSNPs) for which evidence of association with breast cancer risk had been previously reported. Case-control data were combined from 38 studies of white European women (46 450 cases and 42 600 controls) and analyzed using unconditional logistic regression. Strong evidence of association was observed for three nsSNPs: ATXN7-K264R at 3p21 [rs1053338, per allele OR = 1.07, 95% confidence interval (CI) = 1.04-1.10, P = 2.9 × 10(-6)], AKAP9-M463I at 7q21 (rs6964587, OR = 1.05, 95% CI = 1.03-1.07, P = 1.7 × 10(-6)) and NEK10-L513S at 3p24 (rs10510592, OR = 1.10, 95% CI = 1.07-1.12, P = 5.1 × 10(-17)). The first two associations reached genome-wide statistical significance in a combined analysis of available data, including independent data from nine genome-wide association studies (GWASs): for ATXN7-K264R, OR = 1.07 (95% CI = 1.05-1.10, P = 1.0 × 10(-8)); for AKAP9-M463I, OR = 1.05 (95% CI = 1.04-1.07, P = 2.0 × 10(-10)). Further analysis of other common variants in these two regions suggested that intronic SNPs nearby are more strongly associated with disease risk. We have thus identified a novel susceptibility locus at 3p21, and confirmed previous suggestive evidence that rs6964587 at 7q21 is associated with risk. The third locus, rs10510592, is located in an established breast cancer susceptibility region; the association was substantially attenuated after adjustment for the known GWAS hit. Thus, each of the associated nsSNPs is likely to be a marker for another, non-coding, variant causally related to breast cancer risk. Further fine-mapping and functional studies are required to identify the underlying risk-modifying variants and the genes through which they act.BCAC is funded by Cancer Research UK (C1287/A10118, C1287/A12014) and by the European Community’s Seventh Framework Programme under grant agreement n8 223175
(HEALTH-F2–2009-223175) (COGS). Meetings of the BCAC have been funded by the European Union COST programme (BM0606). Genotyping of the iCOGS array was funded by the European Union (HEALTH-F2-2009-223175), Cancer Research UK (C1287/A10710), the Canadian Institutes of Health Research for the ‘CIHR Team in Familial Risks of Breast
Cancer’ program and the Ministry of Economic Development, Innovation and Export Trade of Quebec (PSR-SIIRI-701). Additional support for the iCOGS infrastructure was provided by the
National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112—the GAME-ON initiative), the Department
of Defence (W81XWH-10-1-0341), Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund. The ABCFS and OFBCR work was supported by grant UM1 CA164920 from the National Cancer Institute (USA). The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the Breast Cancer Family Registry (BCFR), nor does mention of trade names, commercial products or organizations imply endorsement t by the US Government or the BCFR. The ABCFS was also supported by the National Health and Medical Research Council of Australia, the New South Wales Cancer Council, the Victorian Health Promotion Foundation (Australia) and the Victorian Breast Cancer Research Consortium. J.L.H. is a National Health and Medical Research Council (NHMRC) Senior Principal Research Fellow and M.C.S. is a NHMRC Senior Research Fellow. The OFBCR work was also supported by the Canadian Institutes of Health Research ‘CIHR Team in Familial Risks of Breast Cancer’ program. The ABCS was funded by the Dutch Cancer Society Grant no. NKI2007-3839 and NKI2009-4363. The ACP study is funded by the Breast Cancer Research Trust, UK. The work of the BBCC was partly funded by ELAN-Programme of the University Hospital of Erlangen. The BBCS is funded by Cancer Research UK and Breakthrough Breast Cancer and acknowledges NHS funding to the NIHR Biomedical Research Centre, and the National Cancer Research Network (NCRN). E.S. is supported by NIHR Comprehensive Biomedical Research Centre, Guy’s & St. Thomas’ NHS Foundation Trust in partnership with King’s College London, UK. Core funding to the Wellcome Trust Centre for Human Genetics was provided by the Wellcome Trust (090532/Z/09/Z). I.T. is
supported by the Oxford Biomedical Research Centre. The BSUCH study was supported by the Dietmar-Hopp Foundation, the Helmholtz Society and the German Cancer Research Center (DKFZ). The CECILE study was funded by the Fondation de France, the French National Institute of Cancer (INCa), The National League against Cancer, the National Agency for Environmental l and Occupational Health and Food Safety (ANSES), the National Agency for Research (ANR), and the Association for Research against Cancer (ARC). The CGPS was supported by the Chief Physician Johan Boserup and Lise Boserup Fund, the Danish Medical Research Council and Herlev Hospital.The CNIO-BCS was supported by the Genome Spain Foundation the Red Temática de Investigación Cooperativa en Cáncer and grants from the Asociación Española Contra el Cáncer and the Fondo de Investigación Sanitario PI11/00923 and PI081120). The Human Genotyping-CEGEN Unit, CNIO is supported by the Instituto de Salud Carlos III. D.A. was supported by a Fellowship from the Michael Manzella Foundation (MMF) and was a participant in the CNIO Summer Training Program. The
CTS was initially supported by the California Breast Cancer Act of 1993 and the California Breast Cancer Research Fund (contract 97-10500) and is currently funded through the National Institutes of Health (R01 CA77398). Collection of cancer incidence e data was supported by the California Department of Public Health as part of the statewide cancer reporting program mandated by California Health and Safety Code Section 103885. HAC receives support from the Lon V Smith Foundation (LVS39420). The ESTHER study was supported by a grant from the Baden Württemberg Ministry of Science, Research and Arts. Additional cases were recruited in the context of the VERDI study, which was supported by a grant from the German Cancer Aid (Deutsche Krebshilfe). The GENICA was funded by the Federal Ministry of Education and Research (BMBF) Germany grants 01KW9975/5, 01KW9976/8, 01KW9977/0 and 01KW0114, the Robert Bosch Foundation, Stuttgart, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), as well as the Department of Internal Medicine , Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus Bonn, Germany. The HEBCS was supported by the Helsinki University Central Hospital Research Fund, Academy of Finland (132473), the Finnish Cancer Society, The Nordic Cancer Union and the Sigrid Juselius Foundation.
The HERPACC was supported by a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science, Sports, Culture and Technology of Japan, by a
Grant-in-Aid for the Third Term Comprehensive 10-Year strategy for Cancer Control from Ministry Health, Labour and Welfare of Japan, by a research grant from Takeda Science Foundation , by Health and Labour Sciences Research Grants for Research on Applying Health Technology from Ministry Health, Labour and Welfare of Japan and by National Cancer Center Research and Development Fund. The HMBCS was supported by short-term fellowships from the German Academic Exchange Program (to N.B), and the Friends of Hannover Medical School (to N.B.). Financial support for KARBAC was provided
through the regional agreement on medical training and clinical research (ALF) between Stockholm County Council and Karolinska Institutet, the Stockholm Cancer Foundation and the Swedish Cancer Society. The KBCP was financially supported by the special Government Funding (EVO) of Kuopio University Hospital grants, Cancer Fund of North Savo, the Finnish
Cancer Organizations, the Academy of Finland and by the strategic funding of the University of Eastern Finland. kConFab is supported by grants from the National Breast Cancer Foundation , the NHMRC, the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania and South Australia and the Cancer Foundation of Western Australia.
The kConFab Clinical Follow Up Study was funded by the NHMRC (145684, 288704, 454508). Financial support for the AOCS was provided by the United States Army Medical Research and Materiel Command (DAMD17-01-1-0729), the Cancer Council of Tasmania and Cancer Foundation of Western Australia and the NHMRC (199600). G.C.T. and P.W. are supported by the NHMRC. LAABC is supported by grants (1RB-0287, 3PB-0102, 5PB-0018 and 10PB-0098) from the California Breast Cancer Research Program. Incident breast cancer cases were collected by the USC Cancer Surveillance Program (CSP) which is supported under subcontract by the California Department of Health. The CSP is also part of the National Cancer Institute’s Division of Cancer Prevention and Control Surveillance, Epidemiology, and End Results Program, under contract number N01CN25403. LMBC is supported by the ‘Stichting tegen Kanker’ (232-2008 and 196-2010). The MARIE study was supported by the Deutsche Krebshilfe e.V. (70-2892-BR I), the Federal Ministry of Education Research (BMBF) Germany (01KH0402), the Hamburg Cancer Society and the German Cancer Research Center (DKFZ). MBCSG is supported by grants from the Italian Association ciation for Cancer Research (AIRC) and by funds from the Italian citizens who allocated a 5/1000 share of their tax payment in support of the Fondazione IRCCS Istituto Nazionale Tumori, according to Italian laws (INT-Institutional strategic projects ‘5 × 1000’). The MCBCS was supported by the NIH grants (CA122340, CA128978) and a Specialized Program of Research Excellence (SPORE) in Breast Cancer (CA116201), the Breast Cancer Research Foundation and a generous gift from the David F. and Margaret T. Grohne Family Foundation and the Ting Tsung and Wei Fong Chao Foundation. MCCS cohort recruitment was funded by VicHealth and Cancer Council Victoria. The MCCS was further supported by Australian NHMRC grants 209057, 251553 and 504711 and by infrastructure provided by Cancer Council Victoria. The MEC was supported by NIH grants CA63464, CA54281, CA098758 and CA132839. The work of MTLGEBCS was supported by the Quebec Breast Cancer Foundation, the Canadian Institutes of Health Research (grant CRN-87521) and the Ministry of Economic Development, Innovation and Export Trade (grant PSR-SIIRI-701). MYBRCA is funded by research grants from the Malaysian Ministry of Science, Technology and Innovation (MOSTI), Malaysian Ministry of Higher Education (UM.C/HlR/MOHE/06) and Cancer Research Initiatives Foundation (CARIF). Additional controls were recruited by the Singapore Eye Research Institute, which was supported by a grant from the Biomedical Research Council (BMRC08/1/35/19,tel:08/1/35/19./550), Singapore and the National medical Research
Council, Singapore (NMRC/CG/SERI/2010). The NBCS was supported by grants from the Norwegian Research council (155218/V40, 175240/S10 to A.L.B.D., FUGE-NFR 181600/
V11 to V.N.K. and a Swizz Bridge Award to A.L.B.D.). The NBHS was supported by NIH grant R01CA100374. Biological sample preparation was conducted the Survey and Biospecimen
Shared Resource, which is supported by P30 CA68485. The OBCS was supported by research grants from the Finnish Cancer Foundation, the Sigrid Juselius Foundation, the
Academy of Finland, the University of Oulu, and the Oulu University Hospital. The ORIGO study was supported by the Dutch Cancer Society (RUL 1997-1505) and the Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NLCP16). The PBCS was funded by Intramural Research Funds of the National Cancer Institute, Department of Health and
Human Services, USA. pKARMA is a combination of the KARMA and LIBRO-1 studies. KARMA was supported by Ma¨rit and Hans Rausings Initiative Against Breast Cancer.
KARMA and LIBRO-1 were supported the Cancer Risk Prediction Center (CRisP; www.crispcenter.org), a Linnaeus Centre (Contract ID 70867902) financed by the Swedish Research Council. The RBCS was funded by the Dutch Cancer Society (DDHK 2004-3124, DDHK 2009-4318). SASBAC was supported by funding from the Agency for Science, Technology and Research of Singapore (A∗STAR), the US National Institute of Health (NIH) and the Susan G. Komen Breast Cancer Foundation KC was financed by the Swedish Cancer Society (5128-B07-01PAF). The SBCGS was supported primarily by NIH grants R01CA64277, R01CA148667, and R37CA70867. Biological sample preparation was conducted the Survey and Biospecimen Shared Resource, which is supported by P30
CA68485. The SBCS was supported by Yorkshire Cancer Research S305PA, S299 and S295. Funding for the SCCS was provided by NIH grant R01 CA092447. The Arkansas Central Cancer Registry is fully funded by a grant from National Program of Cancer Registries, Centers for Disease Control and Prevention (CDC). Data on SCCS cancer cases from Mississippi were collected by the Mississippi Cancer Registry which participates in the National Program of Cancer Registries (NPCR) of the Centers for Disease Control and Prevention (CDC). The contents of this publication are solely the responsibility of the
authors and do not necessarily represent the official views of the CDC or the Mississippi Cancer Registry. SEARCH is funded by a programme grant from Cancer Research UK
(C490/A10124) and supported by the UK National Institute for Health Research Biomedical Research Centre at the University of Cambridge. The SEBCS was supported by the BRL (Basic Research Laboratory) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2012-0000347). SGBCC is funded by the National Medical Research Council Start-up Grant and Centre Grant (NMRC/CG/NCIS /2010). The recruitment of controls by the Singapore Consortium of Cohort
Studies-Multi-ethnic cohort (SCCS-MEC) was funded by the Biomedical Research Council (grant number: 05/1/21/19/425).
SKKDKFZS is supported by the DKFZ. The SZBCS was supported by Grant PBZ_KBN_122/P05/2004. K. J. is a fellow of International PhD program, Postgraduate School of Molecular Medicine, Warsaw Medical University, supported by the Polish Foundation of Science. The TNBCC was supported by the NIH grant (CA128978), the Breast Cancer Research Foundation , Komen Foundation for the Cure, the Ohio State University
Comprehensive Cancer Center, the Stefanie Spielman Fund for Breast Cancer Research and a generous gift from the David F. and Margaret T. Grohne Family Foundation and the Ting
Tsung and Wei Fong Chao Foundation. Part of the TNBCC (DEMOKRITOS) has been co-financed by the European Union (European Social Fund – ESF) and Greek National
Funds through the Operational Program ‘Education and Life-long Learning’ of the National Strategic Reference Framework (NSRF)—Research Funding Program of the General Secretariat for Research & Technology: ARISTEIA. The TWBCS is supported by the Institute of Biomedical Sciences, Academia Sinica and the National Science Council, Taiwan. The
UKBGS is funded by Breakthrough Breast Cancer and the Institute of Cancer Research (ICR). ICR acknowledges NHS funding to the NIHR Biomedical Research Centre. Funding to pay the
Open Access publication charges for this article was provided by the Wellcome Trust.This is the advanced access published version distributed under a Creative Commons Attribution License 2.0, which can also be viewed on the publisher's webstie at: http://hmg.oxfordjournals.org/content/early/2014/07/04/hmg.ddu311.full.pdf+htm
- …