9 research outputs found

    Possible role of reactive chlorine in microbial antagonism and organic matter chlorination in terrestrial environments.

    No full text
    Summary Several studies have demonstrated that extensive formation of organically bound chlorine occurs both in soil and in decaying plant material. Previous studies suggest that enzymatic formation of reactive chlorine outside cells is a major source. However, the ecological role of microbial-induced extracellular chlorination processes remains unclear. In the present paper, we assess whether or not the literature supports the hypothesis that extracellular chlorination is involved in direct antagonism against competitors for the same resources. Our review shows that it is by no means rare that biotic processes create conditions that render biocidal concentrations of reactive chlorine compounds, which suggest that extracellular production of reactive chlorine may have an important role in antagonistic microbial interactions. To test the validity, we searched the UniprotPK database for microorganisms that are known to produce haloperoxidases. It appeared that many of the identified haloperoxidases from terrestrial environments are originating from organisms that are associated with living plants or decomposing plant material. The results of the in silico screening were supported by various field and laboratory studies on natural chlorination. Hence, the ability to produce reactive chlorine seems to be especially common in environments that are known for antibiotic-mediated competition for resources (interference competition). Yet, the ability to produce haloperoxidases is also recorded, for example, for plant endosymbionts and parasites, and there is little or no empirical evidence that suggests that these organisms are antagonistic

    Fluorine-fluorine interactions in the solid state: an experimental and theoretical study

    No full text
    The solid state structures of three compounds that contain a perfluorinated chain, CF3(CF2)(5)CH2CH(CH3)CO2H, CF3(CF2)(5)(CH2)(4)(CF2)(5)CF3 and {CF3(CF2)(5)CH2CH2}(3)P=O have been compared and a number of C-F center dot center dot center dot F-C and C-F center dot center dot center dot H-C interactions that are closer than the sum of the van der Waals radii have been identified. These interactions have been probed by a comprehensive computational chemistry investigation and the stabilizing energy between dimeric fragments was found to be 0.26-29.64 kcal/mol, depending on the type of interaction. An Atoms-in-Molecules (AIM) study has confirmed that specific C-F center dot center dot center dot F-C interactions are indeed present, and are not due simply to crystal packing. The weakly stabilizing nature of these interactions has been utilized in the physisorption of a selected number of compounds containing long chain perfluorinated ponytails onto a perfluorinated self-assembled monolayer, which has been characterized by IRRAS (Infrared Reflection Absorption Spectroscopy)
    corecore