32 research outputs found

    3849_REDITS. Red Interuniversitaria para la didáctica en Trabajo Social

    Get PDF
    El presente trabajo se enmarca en el seno del Programa de Redes-ICE de investigación en docencia universitaria del Vicerrectorado de Calidad e Innovación Educativa-Instituto de Ciencias de la Educación de la Universidad de Alicante (convocatoria 2016-17), “Ref.: 3849 REDITS”. Como primera estrategia partimos de la revisión de la literatura especializada recogiendo lo que venimos trabajando sobre competencias en Trabajo Social y promoción del trabajo colaborativo, e incorporando los aspectos relativos a la supervisión, estableciendo la diferencia entre la supervisión educativa y la supervisión profesional. Se realizó una revisión de la producción desarrollada por REDITS, a efectos de ir procurando no solo la homologación de criterios sino la construcción de estrategias de trabajo a partir de los resultados de las supervisiones. La segunda estrategia consistió en el seguimiento de experiencias puntuales de docencia en las que la red constituye un espacio de construcción de alternativas a partir de poner en común casos de cada universidad buscando puntos de convergencia y alternativas de trabajo. Se trabajó particularmente aspectos relativos a la educación inclusiva en el ámbito universitario. Como tercera estrategia se realizo un grupo de discusión de profesorado y se pasaron evaluaciones abiertas al alumnado sobre los tipos de supervisión en el proceso de enseñanza aprendizaje

    Magnetic domains on magnetite islands: from XMCD-PEEM to micromagnetism

    Get PDF
    Oral presentation given at the 13th European Conference on Surface Crystallography and Dynamics, held in Donostia-San Sebastián, Spain, on June 19-21th, 2017.Magnetite nanostructures and thin films have been grown in spintronic devices such as spin valves in order to take advantage of the high Curie temperature, stability, and predicted half-metal character. However, thin films present magnetic properties which are rather different from the properties of bulk magnetite: high coercive fields, high saturation fields, out-of-plane magnetization, superparamagnetism in ultrathin films, or unexpected easy-axes. An explanation for these effects are growth defects, among which antiphase domain boundaries (APBs) are the best example. In the present work, we study the magnetic domains on flat single-crystal magnetite and other mixed spinels grown on Ru(0001) by molecular beam epitaxy [1,2]. As each island grows from a single nucleus, there are expected to be free of APBs. We have measured with nanometer-resolution the 3D magnetization of the islands by combining x-ray magnetic circular dichroism images acquired in a photoemission electron microscope at different azimuthal angles. The 3D magnetization maps have been used as the initial magnetization configuration for micromagnetic simulations of islands with the same lateral and vertical dimensions as the experimental ones. The Mumax3 software has been used to perform the micromagnetic simulations. By comparing the evolution of the micromagnetic simulations with the experimental behavior of the islands after annealing, we seek to validate the material parameters that define their magnetic behavior and to identify cases where defects or other effects play a role

    Scutoids are a geometrical solution to three-dimensional packing of epithelia

    Get PDF
    As animals develop, tissue bending contributes to shape the organs into complex three-dimensional structures. However, the architecture and packing of curved epithelia remains largely unknown. Here we show by means of mathematical modelling that cells in bent epithelia can undergo intercalations along the apico-basal axis. This phenomenon forces cells to have different neighbours in their basal and apical surfaces. As a consequence, epithelial cells adopt a novel shape that we term “scutoid”. The detailed analysis of diverse tissues confirms that generation of apico-basal intercalations between cells is a common feature during morphogenesis. Using biophysical arguments, we propose that scutoids make possible the minimization of the tissue energy and stabilize three-dimensional packing. Hence, we conclude that scutoids are one of nature's solutions to achieve epithelial bending. Our findings pave the way to understand the three-dimensional organization of epithelial organs

    CartoCell, a high-content pipeline for 3D image analysis, unveils cell morphology patterns in epithelia

    Get PDF
    Decades of research have not yet fully explained the mechanisms of epithelial self-organization and 3D packing. Single-cell analysis of large 3D epithelial libraries is crucial for understanding the assembly and function of whole tissues. Combining 3D epithelial imaging with advanced deep-learning segmentation methods is essential for enabling this high-content analysis. We introduce CartoCell, a deep-learning-based pipeline that uses small datasets to generate accurate labels for hundreds of whole 3D epithelial cysts. Our method detects the realistic morphology of epithelial cells and their contacts in the 3D structure of the tissue. CartoCell enables the quantification of geometric and packing features at the cellular level. Our single-cell cartography approach then maps the distribution of these features on 2D plots and 3D surface maps, revealing cell morphology patterns in epithelial cysts. Additionally, we show that CartoCell can be adapted to other types of epithelial tissues.This work is supported by the project PID2019-103900GB-I00 funded by MCIN/AEI /10.13039/501100011033 and Programa Operativo FEDER Andalucía 2014–2020 (US-1380953) to L.M.E. Work by L.M.E. and J.A.A.-S.R. has been funded by the Junta de Andalucía (Consejerı´a de economı´a, conocimiento, empresas y Universidad) grant PY18-631 co-funded by FEDER funds. A.T. has been funded by a ‘‘Contrato predoctoral PIF’’ from Universidad de Sevilla. C.G.-V. has been funded by a ‘‘Contrato predoctoral para la formacio´ n de doctores’’ BES-2017-082306. G.B. was supported by a Comunidad de Madrid contract (CAM) and by an FPI grant from MINECO (BES-2022-077789). F.M.-B. was supported by MICINN (PID2020-120367GB-I00) and Fundacio´ n Ramo´ n Areces (CIVP18A3904). P.G.-G. has been funded by Margarita Salas Fellowship – NextGenerationEU. C.H.F.-E. has been funded by Marı´a Zambrano Fellowship – NextGenerationEU. I.A.-C. would like to acknowledge that his work has been partially supported by the University of the Basque Country UPV/EHU grant GIU19/027 and by grant PID2021-126701OB-I00, funded by MCIN/AEI/10.13039/501100011033 and by ‘‘ERDF A way of making Europe." L.M.E. also wants to thank PIE-202120E047 – Conexiones-Life network for networking and input

    CartoCell, a high-content pipeline for 3D image analysis, unveils cell morphology patterns in epithelia

    Get PDF
    Decades of research have not yet fully explained the mechanisms of epithelial self-organization and 3D packing. Single-cell analysis of large 3D epithelial libraries is crucial for understanding the assembly and function of whole tissues. Combining 3D epithelial imaging with advanced deep-learning segmentation methods is essential for enabling this high-content analysis. We introduce CartoCell, a deep-learning-based pipeline that uses small datasets to generate accurate labels for hundreds of whole 3D epithelial cysts. Our method detects the realistic morphology of epithelial cells and their contacts in the 3D structure of the tissue. CartoCell enables the quantification of geometric and packing features at the cellular level. Our single-cell cartography approach then maps the distribution of these features on 2D plots and 3D surface maps, revealing cell morphology patterns in epithelial cysts. Additionally, we show that CartoCell can be adapted to other types of epithelial tissues

    Preciriego: Un proyecto de colaboración público‐privada para adaptar la irrigación de precisión al riego por goteo de los cultivos leñosos

    Get PDF
    En las últimas décadas se han realizado grandes avances para ajustar la dosis de riego a aplicar las necesidades hídricas promedio de una parcela, tendiendo hacia un riego de precisión. El siguiente reto que aborda el proyecto Preciriego es tener en cuenta la variabilidad en las parcelas para ajustar el riego a las posibles diferencias existentes. Mientras en cultivos herbáceos más extensivos y bajo riego por aspersión con Pivots este desafío ha sido ya abordado, se han realizado menos trabajos en cultivos leñosos y riego por goteo. En esta comunicación se integran técnicas de teledetección de rango cercano utilizando drones y modelos hidráulicos de precisión para llevar a cabo una zonificación de un viñedo comercial para definir tres zonas con distintos índices de vigor vegetativo. Posteriormente, se ha aplicado un riego diferencial para cada zona de modo que, manteniendo la dosis promedio establecida de unos 1000 m3/ha, la misma ha sido aplicada de forma diferencial en función del vigor de las cepas. Para ello se ha variado el diseño agronómico del riego, utilizando distintas distancias entre goteros en función de la zonificación realizada. De este modo, sin tener que sectorizar ni aplicar tiempos o frecuencias de riego distintas para cada zona, la pluviosidad de la instalación fue distinta. Dicha estrategia de riego de precisión ha sido validada en campo, demostrando que las zonas de mayor vigor vegetativo han aprovechado mejor la mayor dotación de riego empleada teniendo una mayor producción frente a otras zonas con menor desarrollo vegetativo donde se ha considerado que la productividad de las cepas podía estar limitada por otros factores al margen del riego. Otra de las ventajas del sistema de riego de precisión radica en la automatización de la programación llevada a cabo desarrollada mediante nuevos programadores con posibilidad de tele‐lectura y fácil instalación en parcela. La puesta en práctica de los sistemas de riego de precisión sigue adelante en el proyecto Preciriego con otros ensayos en marcha en cultivos leñosos y hortícolas al aire libre

    Author Correction: Scutoids are a geometrical solution to three-dimensional packing of epithelia.

    Get PDF
    The original version of this Article contained an error in ref. 39, which incorrectly cited 'Fristrom, D. & Fristrom, J. W. in The Development of Drosophila melanogaster (eds. Bate, M. & Martinez-Arias, A.) II, (Cold spring harbor laboratory press, 1993)'. The correct reference is 'Condic, M.L, Fristrom, D. & Fristrom, J.W. Apical cell shape changes during Drosophila imaginal leg disc elongation: a novel morphogenetic mechanism. Development 111: 23-33 (1991)'. Furthermore, the last sentence of the fourth paragraph of the introduction incorrectly omitted citation of work by Rupprecht et al. The correct citation is given below. These errors have now been corrected in both the PDF and HTML versions of the Article. Rupprecht, J.F., Ong, K.H., Yin, J., Huang, A., Dinh, H.H., Singh, A.P., Zhang, S., Yu, W. & Saunders, T.E. Geometric constraints alter cell arrangements within curved epithelial tissues. Mol. Biol. Cell 28, 3582-3594 (2017)

    Supplemental information CartoCell, a high-content pipeline for 3D image analysis, unveils cell morphology patterns in epithelia

    Get PDF
    Document S1. Figures S1–S6 Table S1. Extracted features from 353 curated cysts (104 cysts at 4 days, 103 cysts at 7 days, 116 cysts at 10 days), related to Figure 2 Table S2. Hyperparameter search space for our proposed 3D ResU-Net, related to Figure 1 Table S3. Performance evaluation of our pipeline (CartoCell) on images of different epithelial tissues and comparison with other state-of-the-art segmentation methods, using the evaluation metrics described in STAR Methods, related to Figure 1 Table S4. Relative error between features extracted using automatically segmented cysts and manually curated cysts (STAR Methods), related to Figure 1 Table S5. Cyst morphology and scutoid location statistics, related to Figure 2 Table S6. Comparison of morphology and packing features of normoxic and hypoxic MDCK cysts, related to Figure 2 Table S7. Classification of the developmental stages of Drosophila egg chambers employed, related to Figure 3 Document S2. Article plus supplemental informationPeer reviewe

    Production and processing of graphene and related materials

    Get PDF
    © 2020 The Author(s). We present an overview of the main techniques for production and processing of graphene and related materials (GRMs), as well as the key characterization procedures. We adopt a 'hands-on' approach, providing practical details and procedures as derived from literature as well as from the authors' experience, in order to enable the reader to reproduce the results. Section I is devoted to 'bottom up' approaches, whereby individual constituents are pieced together into more complex structures. We consider graphene nanoribbons (GNRs) produced either by solution processing or by on-surface synthesis in ultra high vacuum (UHV), as well carbon nanomembranes (CNM). Production of a variety of GNRs with tailored band gaps and edge shapes is now possible. CNMs can be tuned in terms of porosity, crystallinity and electronic behaviour. Section II covers 'top down' techniques. These rely on breaking down of a layered precursor, in the graphene case usually natural crystals like graphite or artificially synthesized materials, such as highly oriented pyrolythic graphite, monolayers or few layers (FL) flakes. The main focus of this section is on various exfoliation techniques in a liquid media, either intercalation or liquid phase exfoliation (LPE). The choice of precursor, exfoliation method, medium as well as the control of parameters such as time or temperature are crucial. A definite choice of parameters and conditions yields a particular material with specific properties that makes it more suitable for a targeted application. We cover protocols for the graphitic precursors to graphene oxide (GO). This is an important material for a range of applications in biomedicine, energy storage, nanocomposites, etc. Hummers' and modified Hummers' methods are used to make GO that subsequently can be reduced to obtain reduced graphene oxide (RGO) with a variety of strategies. GO flakes are also employed to prepare three-dimensional (3d) low density structures, such as sponges, foams, hydro- or aerogels. The assembly of flakes into 3d structures can provide improved mechanical properties. Aerogels with a highly open structure, with interconnected hierarchical pores, can enhance the accessibility to the whole surface area, as relevant for a number of applications, such as energy storage. The main recipes to yield graphite intercalation compounds (GICs) are also discussed. GICs are suitable precursors for covalent functionalization of graphene, but can also be used for the synthesis of uncharged graphene in solution. Degradation of the molecules intercalated in GICs can be triggered by high temperature treatment or microwave irradiation, creating a gas pressure surge in graphite and exfoliation. Electrochemical exfoliation by applying a voltage in an electrolyte to a graphite electrode can be tuned by varying precursors, electrolytes and potential. Graphite electrodes can be either negatively or positively intercalated to obtain GICs that are subsequently exfoliated. We also discuss the materials that can be amenable to exfoliation, by employing a theoretical data-mining approach. The exfoliation of LMs usually results in a heterogeneous dispersion of flakes with different lateral size and thickness. This is a critical bottleneck for applications, and hinders the full exploitation of GRMs produced by solution processing. The establishment of procedures to control the morphological properties of exfoliated GRMs, which also need to be industrially scalable, is one of the key needs. Section III deals with the processing of flakes. (Ultra)centrifugation techniques have thus far been the most investigated to sort GRMs following ultrasonication, shear mixing, ball milling, microfluidization, and wet-jet milling. It allows sorting by size and thickness. Inks formulated from GRM dispersions can be printed using a number of processes, from inkjet to screen printing. Each technique has specific rheological requirements, as well as geometrical constraints. The solvent choice is critical, not only for the GRM stability, but also in terms of optimizing printing on different substrates, such as glass, Si, plastic, paper, etc, all with different surface energies. Chemical modifications of such substrates is also a key step. Sections IV-VII are devoted to the growth of GRMs on various substrates and their processing after growth to place them on the surface of choice for specific applications. The substrate for graphene growth is a key determinant of the nature and quality of the resultant film. The lattice mismatch between graphene and substrate influences the resulting crystallinity. Growth on insulators, such as SiO2, typically results in films with small crystallites, whereas growth on the close-packed surfaces of metals yields highly crystalline films. Section IV outlines the growth of graphene on SiC substrates. This satisfies the requirements for electronic applications, with well-defined graphene-substrate interface, low trapped impurities and no need for transfer. It also allows graphene structures and devices to be measured directly on the growth substrate. The flatness of the substrate results in graphene with minimal strain and ripples on large areas, allowing spectroscopies and surface science to be performed. We also discuss the surface engineering by intercalation of the resulting graphene, its integration with Si-wafers and the production of nanostructures with the desired shape, with no need for patterning. Section V deals with chemical vapour deposition (CVD) onto various transition metals and on insulators. Growth on Ni results in graphitized polycrystalline films. While the thickness of these films can be optimized by controlling the deposition parameters, such as the type of hydrocarbon precursor and temperature, it is difficult to attain single layer graphene (SLG) across large areas, owing to the simultaneous nucleation/growth and solution/precipitation mechanisms. The differing characteristics of polycrystalline Ni films facilitate the growth of graphitic layers at different rates, resulting in regions with differing numbers of graphitic layers. High-quality films can be grown on Cu. Cu is available in a variety of shapes and forms, such as foils, bulks, foams, thin films on other materials and powders, making it attractive for industrial production of large area graphene films. The push to use CVD graphene in applications has also triggered a research line for the direct growth on insulators. The quality of the resulting films is lower than possible to date on metals, but enough, in terms of transmittance and resistivity, for many applications as described in section V. Transfer technologies are the focus of section VI. CVD synthesis of graphene on metals and bottom up molecular approaches require SLG to be transferred to the final target substrates. To have technological impact, the advances in production of high-quality large-area CVD graphene must be commensurate with those on transfer and placement on the final substrates. This is a prerequisite for most applications, such as touch panels, anticorrosion coatings, transparent electrodes and gas sensors etc. New strategies have improved the transferred graphene quality, making CVD graphene a feasible option for CMOS foundries. Methods based on complete etching of the metal substrate in suitable etchants, typically iron chloride, ammonium persulfate, or hydrogen chloride although reliable, are time- and resourceconsuming, with damage to graphene and production of metal and etchant residues. Electrochemical delamination in a low-concentration aqueous solution is an alternative. In this case metallic substrates can be reused. Dry transfer is less detrimental for the SLG quality, enabling a deterministic transfer. There is a large range of layered materials (LMs) beyond graphite. Only few of them have been already exfoliated and fully characterized. Section VII deals with the growth of some of these materials. Amongst them, h-BN, transition metal tri- and di-chalcogenides are of paramount importance. The growth of h-BN is at present considered essential for the development of graphene in (opto) electronic applications, as h-BN is ideal as capping layer or substrate. The interesting optical and electronic properties of TMDs also require the development of scalable methods for their production. Large scale growth using chemical/physical vapour deposition or thermal assisted conversion has been thus far limited to a small set, such as h-BN or some TMDs. Heterostructures could also be directly grown
    corecore