Magnetic domains on magnetite islands: from XMCD-PEEM to micromagnetism

Abstract

Oral presentation given at the 13th European Conference on Surface Crystallography and Dynamics, held in Donostia-San Sebastián, Spain, on June 19-21th, 2017.Magnetite nanostructures and thin films have been grown in spintronic devices such as spin valves in order to take advantage of the high Curie temperature, stability, and predicted half-metal character. However, thin films present magnetic properties which are rather different from the properties of bulk magnetite: high coercive fields, high saturation fields, out-of-plane magnetization, superparamagnetism in ultrathin films, or unexpected easy-axes. An explanation for these effects are growth defects, among which antiphase domain boundaries (APBs) are the best example. In the present work, we study the magnetic domains on flat single-crystal magnetite and other mixed spinels grown on Ru(0001) by molecular beam epitaxy [1,2]. As each island grows from a single nucleus, there are expected to be free of APBs. We have measured with nanometer-resolution the 3D magnetization of the islands by combining x-ray magnetic circular dichroism images acquired in a photoemission electron microscope at different azimuthal angles. The 3D magnetization maps have been used as the initial magnetization configuration for micromagnetic simulations of islands with the same lateral and vertical dimensions as the experimental ones. The Mumax3 software has been used to perform the micromagnetic simulations. By comparing the evolution of the micromagnetic simulations with the experimental behavior of the islands after annealing, we seek to validate the material parameters that define their magnetic behavior and to identify cases where defects or other effects play a role

    Similar works