87 research outputs found

    Chemical Composition, Antioxidant and Antibacterial Activities of Thymus broussonetii Boiss and Thymus capitatus (L.) Hoffmann and Link Essential Oils

    Get PDF
    Thymus capitatus and Thymus broussonnetii are two Moroccan endemic medicinal plants used traditionally by the local population. The present study aims to investigate their essential oil chemical composition, antioxidant and antibacterial activities. The chemical composition of the essential oils was determined using the GC-MS analysis, the antioxidant activity assessed using DPPH and FRAP methods while the antimicrobial activity was evaluated against nine bacteria species tested (Enterococcus faecalis, Serratia fonticola, Acinetobacter baumannii, Klebsiella oxytoca, sensitive Klebsiella pneumoniae, sensitive Escherichia coli, resistant Escherichia coli, resistant Staphylococcus aureus and Enterobacter aerogenes). The major identified compounds of T. capitatus essential oil where carvacrol (75%) and p-cymene (10.58%) while carvacrol (60.79%), thymol (12.9%), p-cymene (6.21%) and γ-terpinene (4.47%) are the main compounds in T. broussonnetii essential oil. The bioactivity of the essential oils of the two species of thyme was explained by their richness in oxygenated monoterpenes known for their great effectiveness with an IC50 of 3.48 ± 0.05 and 4.88 ± 0.04 μL/mL and EC50 of 0.12 ± 0.01 and 0.20 ± 0.02 μL/mL in the DPPH and FRAP assays, respectively, with an important antibacterial activity. These results encourage the use of these plants as a source of natural antioxidants, and antibacterial additives, to protect food from oxidative damage and to eliminate bacteria that are responsible for nosocomial infections

    Chemical Composition, Antioxidant and Antibacterial Activities of Thymus broussonetii Boiss and Thymus capitatus (L.) Hoffmann and Link Essential Oils

    Get PDF
    Thymus capitatus and Thymus broussonnetii are two Moroccan endemic medicinal plants used traditionally by the local population. The present study aims to investigate their essential oil chemical composition, antioxidant and antibacterial activities. The chemical composition of the essential oils was determined using the GC-MS analysis, the antioxidant activity assessed using DPPH and FRAP methods while the antimicrobial activity was evaluated against nine bacteria species tested (Enterococcus faecalis, Serratia fonticola, Acinetobacter baumannii, Klebsiella oxytoca, sensitive Klebsiella pneumoniae, sensitive Escherichia coli, resistant Escherichia coli, resistant Staphylococcus aureus and Enterobacter aerogenes). The major identified compounds of T. capitatus essential oil where carvacrol (75%) and p-cymene (10.58%) while carvacrol (60.79%), thymol (12.9%), p-cymene (6.21%) and γ-terpinene (4.47%) are the main compounds in T. broussonnetii essential oil. The bioactivity of the essential oils of the two species of thyme was explained by their richness in oxygenated monoterpenes known for their great effectiveness with an IC50 of 3.48 ± 0.05 and 4.88 ± 0.04 μL/mL and EC50 of 0.12 ± 0.01 and 0.20 ± 0.02 μL/mL in the DPPH and FRAP assays, respectively, with an important antibacterial activity. These results encourage the use of these plants as a source of natural antioxidants, and antibacterial additives, to protect food from oxidative damage and to eliminate bacteria that are responsible for nosocomial infections

    Chemical Composition, Antioxidant and Antibacterial Activities of Thymus broussonetii Boiss and Thymus capitatus (L.) Hoffmann and Link Essential Oils

    Get PDF
    Thymus capitatus and Thymus broussonnetii are two Moroccan endemic medicinal plants used traditionally by the local population. The present study aims to investigate their essential oil chemical composition, antioxidant and antibacterial activities. The chemical composition of the essential oils was determined using the GC-MS analysis, the antioxidant activity assessed using DPPH and FRAP methods while the antimicrobial activity was evaluated against nine bacteria species tested (Enterococcus faecalis, Serratia fonticola, Acinetobacter baumannii, Klebsiella oxytoca, sensitive Klebsiella pneumoniae, sensitive Escherichia coli, resistant Escherichia coli, resistant Staphylococcus aureus and Enterobacter aerogenes). The major identified compounds of T. capitatus essential oil where carvacrol (75%) and p-cymene (10.58%) while carvacrol (60.79%), thymol (12.9%), p-cymene (6.21%) and gamma-terpinene (4.47%) are the main compounds in T. broussonnetii essential oil. The bioactivity of the essential oils of the two species of thyme was explained by their richness in oxygenated monoterpenes known for their great effectiveness with an IC50 of 3.48 +/- 0.05 and 4.88 +/- 0.04 mu L/mL and EC50 of 0.12 +/- 0.01 and 0.20 +/- 0.02 mu L/mL in the DPPH and FRAP assays, respectively, with an important antibacterial activity. These results encourage the use of these plants as a source of natural antioxidants, and antibacterial additives, to protect food from oxidative damage and to eliminate bacteria that are responsible for nosocomial infections.Peer reviewe

    Early assessment of lung function in coronavirus patients using invariant markers from chest X-rays images

    Get PDF
    The primary goal of this manuscript is to develop a computer assisted diagnostic (CAD) system to assess pulmonary function and risk of mortality in patients with coronavirus disease 2019 (COVID-19). The CAD system processes chest X-ray data and provides accurate, objective imaging markers to assist in the determination of patients with a higher risk of death and thus are more likely to require mechanical ventilation and/or more intensive clinical care.To obtain an accurate stochastic model that has the ability to detect the severity of lung infection, we develop a second-order Markov-Gibbs random field (MGRF) invariant under rigid transformation (translation or rotation of the image) as well as scale (i.e., pixel size). The parameters of the MGRF model are learned automatically, given a training set of X-ray images with affected lung regions labeled. An X-ray input to the system undergoes pre-processing to correct for non-uniformity of illumination and to delimit the boundary of the lung, using either a fully-automated segmentation routine or manual delineation provided by the radiologist, prior to the diagnosis. The steps of the proposed methodology are: (i) estimate the Gibbs energy at several different radii to describe the inhomogeneity in lung infection; (ii) compute the cumulative distribution function (CDF) as a new representation to describe the local inhomogeneity in the infected region of lung; and (iii) input the CDFs to a new neural network-based fusion system to determine whether the severity of lung infection is low or high. This approach is tested on 200 clinical X-rays from 200 COVID-19 positive patients, 100 of whom died and 100 who recovered using multiple training/testing processes including leave-one-subject-out (LOSO), tenfold, fourfold, and twofold cross-validation tests. The Gibbs energy for lung pathology was estimated at three concentric rings of increasing radii. The accuracy and Dice similarity coefficient (DSC) of the system steadily improved as the radius increased. The overall CAD system combined the estimated Gibbs energy information from all radii and achieved a sensitivity, specificity, accuracy, and DSC of 100%, 97% ± 3%, 98% ± 2%, and 98% ± 2%, respectively, by twofold cross validation. Alternative classification algorithms, including support vector machine, random forest, naive Bayes classifier, K-nearest neighbors, and decision trees all produced inferior results compared to the proposed neural network used in this CAD system. The experiments demonstrate the feasibility of the proposed system as a novel tool to objectively assess disease severity and predict mortality in COVID-19 patients. The proposed tool can assist physicians to determine which patients might require more intensive clinical care, such a mechanical respiratory support

    Knowledge, attitudes and practices with regard to the presence, transmission, impact, and control of cystic echinococcosis in Sidi Kacem Province, Morocco

    Get PDF
    BACKGROUND: This study is a component of a large research project on five major neglected zoonotic diseases (NZDs) including cystic echinococcosis and was undertaken in the Province of Sidi Kacem over a period of four years (April 2009-March 2013). METHODS: Questionnaires were administered at community level in a total of 27 communes and visits were made to all of the 10 abattoirs situated in the Province, to collect qualitative data on determinants of transmission for disease in humans and animals. More specifically, community knowledge, attitudes and practices related to cystic echinococcosis were assessed, as well as the extent to which local customs and behaviours may promote transmission. Abattoir infrastructure and practices, and their role in perpetuating disease transmission were also critically evaluated. RESULTS: The results show that only 50 % of people have heard of the disease, and of those, only 21 % are aware of the dog’s role in disease transmission. Sixty-seven per cent of respondents stated that dogs are fed ruminant organs deemed unfit for human consumption. Owned dogs have access to the family home, including the kitchen, in 39 % of households. The extent of this close proximity between humans and animals is even more pertinent when one considers that dogs are omnipresent in the community, with an average of 1.8 dogs owned per household. The unrestricted access of dogs to abattoirs is a huge issue, which further promotes disease transmission. CONCLUSION: This study would suggest that the high prevalence of cystic echinococcosis in humans and animals in Morocco is largely due to three factors: 1) abundance of dogs 2) engagement in risky behaviour of the local population and 3) poor abattoir infrastructure and practices. This has serious implications in terms of the socio-economic impact of the disease, especially for rural poor communities. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40249-015-0082-9) contains supplementary material, which is available to authorized users

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
    • …
    corecore