13,674 research outputs found

    Influenza and memory T cells : how to awake the force

    Get PDF
    Annual influenza vaccination is an effective way to prevent human influenza. Current vaccines are mainly focused on eliciting a strain-matched humoral immune response, requiring yearly updates, and do not provide protection for all vaccinated individuals. The past few years, the importance of cellular immunity, and especially memory T cells, in long-lived protection against influenza virus has become clear. To overcome the shortcomings of current influenza vaccines, eliciting both humoral and cellular immunity is imperative. Today, several new vaccines such as infection-permissive and recombinant T cell inducing vaccines, are being developed and show promising results. These vaccines will allow us to stay several steps ahead of the constantly evolving influenza virus

    Immunological Changes after Cancer Treatment and Participation in an Exercise Program

    Get PDF
    Purpose: The purpose of this investigation was to evaluate the impact of undertaking peripheral blood stem cell transplantation (PBST) on T-cell number and function, and to determine the role of a mixed type, moderate intensity exercise program in facilitating the recovery of T-cell number and function. Methods: Immunological measures of white blood cell, lymphocyte, CD3+, CD4+, and CD8+ counts, and CD3+ cell function were assessed pretransplant (PI), immediately posttransplant (PII), and 1 month (I1), 2 months (I2) and 3 months (PIII) posttransplant. After PII, 12 patients were divided equally into a control group (CG) or exercise intervention group (EG). Results: Lower total T-cell, helper T-cell, and suppressor T-cell counts (P < 0.01), as well as lower T-cell function (P < 0.01), when compared with normative data, were found at PI. More specifically, 88% of the group had CD3+, CD4+, and CD8+ counts that were more than 40%, 20%, and 50% below normal at PI, respectively. Undertaking a PBST caused further adverse changes to the total leukocyte, lymphocyte, CD3+, CD4+ and CD8+ count, and the helper/suppressor ratio. Although CD8+ counts had returned to normal by PIII, CD3+, CD4+, and the CD4+/CD8+ ratio remained significantly lower than normative data (P < 0.01), with 66%, 100%, and 100% of the subject group reporting counts and ratios, respectively, below the normal range. Conclusion: The PBST patients were immunocompromised before undertaking the transplant, and the transplant procedure imposed further adverse changes to the leukocyte and lymphocyte counts. The leukocyte and CD8+ counts returned to normal within 3 months posttransplant; however, the other immunological parameters assessed demonstrated a delayed recovery. Although participation in the exercise program did not facilitate a faster immune cell recovery, neither did the exercise program hinder or delay recovery

    Modulation of Cox-1, 5-, 12- and 15-Lox by popular herbal remedies used in southern Italy against psoriasis and other skin diseases.

    Get PDF
    Acanthus mollis (Acanthaceae), Achillea ligustica, Artemisia arborescens and Inula viscosa (Asteraceae) are used in Southern Italy against psoriasis and other skin diseases that occur with an imbalanced production of eicosanoids. We here assessed their in vitro effects upon 5-, 12-, 15-LOX and COX-1 enzymes as well as NFκB activation in intact cells as their possible therapeutic targets. All methanol crude extracts inhibited both 5-LOX and COX-1 activities under 200 µg/mL, without significant effects on the 12-LOX pathway or any relevant in vitro free radical scavenging activity. NFκB activation was prevented by all extracts but A. mollis. Interestingly, A. ligustica, A. arborescens and A. mollis increased the biosynthesis of 15(S)-HETE, an anti-inflammatory eicosanoid. A. ligustica (IC50 =49.5 µg/mL) was superior to Silybum marianum (IC50 =147.8 µg/mL), which we used as antipsoriatic herbal medicine of reference. Its n-hexane, dichloromethane and ethyl acetate fractions had also inhibitory effects on the LTB4 biosynthesis (IC50 s=9.6, 20.3 and 68 µg/mL, respectively) evidencing that the apolar extracts of A. ligustica are promising active herbal ingredients for future phytotherapeutical products targeting psoriasis

    A miniaturized bioreactor system for the evaluation of cell interaction with designed substrates in perfusion culture

    Get PDF
    In tissue engineering, the chemical and topographical cues within three-dimensional (3D) scaffolds are normally tested using static cell cultures but applied directly to tissue cultures in perfusion bioreactors. As human cells are very sensitive to the changes of culture environment, it is essential to evaluate the performance of any chemical, and topographical cues in a perfused environment before they are applied to tissue engineering. Thus the aim of this research was to bridge the gap between static and perfusion cultures by addressing the effect of perfusion on cell cultures within 3D scaffolds. For this we developed a scale down bioreactor system, which allows to evaluate the effectiveness of various chemical and topographical cues incorporated into our previously developed tubular ε-polycaprolactone scaffold under perfused conditions. Investigation of two exemplary cell types (fibroblasts and cortical astrocytes) using the miniaturized bioreactor indicated that: (1) quick and firm cell adhesion in 3D scaffold was critical for cell survival in perfusion culture compared with static culture, thus cell seeding procedures for static cultures might not be applicable. Therefore it was necessary to re-evaluate cell attachment on different surfaces under perfused conditions before a 3D scaffold was applied for tissue cultures, (2) continuous medium perfusion adversely influenced cell spread and survival, which could be balanced by intermittent perfusion, (3) micro-grooves still maintained its influences on cell alignment under perfused conditions, while medium perfusion demonstrated additional influence on fibroblast alignment but not on astrocyte alignment on grooved substrates. This research demonstrated that the mini-bioreactor system is crucial for the development of functional scaffolds with suitable chemical and topographical cues by bridging the gap between static culture and perfusion culture

    Cell sorting in a Petri dish controlled by computer vision.

    Get PDF
    Fluorescence-activated cell sorting (FACS) applying flow cytometry to separate cells on a molecular basis is a widespread method. We demonstrate that both fluorescent and unlabeled live cells in a Petri dish observed with a microscope can be automatically recognized by computer vision and picked up by a computer-controlled micropipette. This method can be routinely applied as a FACS down to the single cell level with a very high selectivity. Sorting resolution, i.e., the minimum distance between two cells from which one could be selectively removed was 50-70 micrometers. Survival rate with a low number of 3T3 mouse fibroblasts and NE-4C neuroectodermal mouse stem cells was 66 +/- 12% and 88 +/- 16%, respectively. Purity of sorted cultures and rate of survival using NE-4C/NE-GFP-4C co-cultures were 95 +/- 2% and 62 +/- 7%, respectively. Hydrodynamic simulations confirmed the experimental sorting efficiency and a cell damage risk similar to that of normal FACS

    New simplified molecular design for functional T cell receptor

    Get PDF
    We have produced a chimeric single-chain T cell receptor (TcR) that combines the specific antibody recognition function and TcR/CD3 signaling properties within the same polypeptide chain. This hybrid molecule consisted of a single-chain antibody combining site that was connected over a short spacer to the transmembrane and cytoplasmic region of CD3. When expressed on TcR- or TcR+ T cell hybridomas it could mediate recognition of relevent target cells and subsequent production of lymphokines; i.e. it could functionally replace the TcR/CD3 complex. Therefore, the single-chain TcR model presented here represents an interesting and useful means for the creation of T cells with new specificities

    Enhanced cytotoxicity of silver complexes bearing bidentate N-heterocyclic carbene ligands

    Get PDF
    A diverse library of cationic silver complexes bearing bis(N-heterocyclic carbene) ligands have been prepared which exhibit cytotoxicity comparable to cisplatin against the adenocarcinomas MCF7 and DLD1. Bidentate ligands show enhanced cytotoxicity over monodentate and macrocyclic ligands

    Estrogens and genomic instability in human cancer cells-involvement of Src/Raf/Erk signaling in micronucleus formation by estrogenic chemicals

    Get PDF
    This article is available open access through the publisher’s website. Copyright @ 2008 The Authors.Reports of the ability of estrogenic agents such as 17β-estradiol (E2), estriol (E3) and bisphenol A (BPA) to induce micronuclei (MN) in MCF-7 breast cancer cells have prompted us to investigate whether these effects are linked to activation of the estrogen receptor (ER) α. Coadministration of tamoxifen and the pure ER antagonist ICI 182 780 to cells treated with E2 and E3 did not lead to significant reductions in micronucleus frequencies. Since these antiestrogens interfere with the transcriptional activity of the ER and block promotion of ER-dependent gene expression, it appears that this process is not involved in micronucleus formation. However, ER activation also triggers rapid signaling via the Src/Raf/extracellular signal-regulated kinase (Erk) pathway. When MCF-7 cells were exposed to E2 and BPA in combination with the specific kinase inhibitors pyrazolopyrimidine and 2′-amino-3′-methoxyflavone, reductions in micronucleus frequencies occurred. These findings suggest that the Src/Raf/Erk pathway plays a role in micronucleus formation by estrogenic agents. Enhanced activation of the Src/Raf/Erk cascade disturbs the localization of Aurora B kinase to kinetochores, leading to a defective spindle checkpoint with chromosome malsegregation. Using antikinetochore CREST antibody staining, a high proportion of micronucleus containing kinetochores was observed, indicating that such processes are relevant to the induction of MN by estrogens. Our results suggest that estrogens induce MN by causing improper chromosome segregation, possibly by interfering with kinase signaling that controls the spindle checkpoint, or by inducing centrosome amplification. Our findings may have some relevance in explaining the effects of estrogens in the later stages of breast carcinogenesis.European Commissio

    Association between genetic polymorphisms and response to anti-TNFs in patients with inflammatory bowel disease

    Full text link
    Tumor necrosis factor (TNF) is a major proinflammatory cytokine involved in the immune response in inflammatory bowel disease (IBD). Anti-TNF drugs such as infliximab and adalimumab are used to treat IBD; however, approximately 30% of patients do not respond to treatment. Individual genetic differences could contribute to lack of efficacy. Genetic studies have tried to uncover the factors underlying differences in response, however, knowledge remains limited, and the results obtained should be validated, so that pharmacogenetic information can be applied in clinical practice. In this review, we gather current knowledge in the pharmacogenetics of anti-TNF drugs in patients with IBD. We observed a connection between the major genes described as possible predictors of response to anti-TNF drugs in IBD and the cytokines and molecules involved in the T helper (Th) 17 pathwayThis study was supported by Fundación Teófilo Hernando. Rocío Prieto-Pérez has a grant from Universidad Autónoma de Madrid (research personnel in training (FPI) program 2013)

    Calcium carbonate-calcium phosphate mixed cement compositions for bone reconstruction

    Get PDF
    The feasibility of making calcium carbonate-calcium phosphate (CaCO3-CaP) mixed cements, comprising at least 40 % (w/w) CaCO3 in the dry powder ingredients, has been demonstrated. Several original cement compositions were obtained by mixing metastable crystalline calcium carbonate phases with metastable amorphous or crystalline calcium phosphate powders in aqueous medium. The cements set within at most 1 hour at 37°C in atmosphere saturated with water. The hardened cement is microporous and exhibits weak compressive strength. The setting reaction appeared to be essentially related to the formation of a highly carbonated nanocrystalline apatite phase by reaction of the mestastable CaP phase with part or almost all of the metastable CaCO3 phase. The recrystallization of metastable CaP varieties led to a final cement consisting of a highly carbonated poorly crystalline apatite (PCA) analogous to bone mineral associated with various amounts of vaterite and/or aragonite. The presence of controlled amounts of CaCO3 with a higher solubility than the apatite formed in the well-developed calcium phosphate cements might be of interest to increase resorption rates in biomedical cement and favor its replacement by bone tissue. Cytotoxicity testing revealed excellent cytocompatibility of CaCO3-CaP mixed cement compositions
    corecore