334 research outputs found
PREFERENCE FOR TOP- VS. SIDE-BINDING IN FLUORINATED ETHYLENE· · · CO2 COMPLEXES
The weakly bound complexes between 1-fluoroethylene (FE), 1,1-difluoroethylene (DFE), and 1,1,2-trifluoroethylene (TFE) and carbon dioxide have been investigated using reduced bandwidth chirped-pulse (CP) and resonant-cavity Fourier-transform microwave (FTMW) spectroscopy. In FECO, two distinct planar isomers are observed, corresponding to the CO interacting with the CHF end of the FE (side-binding) or roughly parallel to the C=C bond (top-binding). Both structures contain a C--HO contact between one FE hydrogen atom and CO. In DFECO, only a top-binding configuration is possible, consistent with the observed structure. Finally, although both top- and side-binding orientations are possible for TFECO, only the side-binding conformation has been observed. The C--HO distances in the four species vary from \AA\ to \AA, while the observed FC distances are much more consistent, varying by only about \AA\ across the series. Ab initio calculations at the MP2/6-311++G(2d,2p) level have provided exceptionally accurate estimates of the rotational constants of these CO complexes, although the energy ordering is, in several cases, inconsistent with the observed geometries
Abundance and species diversity hotspots of tracked marine predators across the North American Arctic
Aim: Climate change is altering marine ecosystems worldwide and is most pronounced in the Arctic. Economic development is increasing leading to more disturbances and pressures on Arctic wildlife. Identifying areas that support higher levels of predator abundance and biodiversity is important for the implementation of targeted conservation measures across the Arctic. Location: Primarily Canadian Arctic marine waters but also parts of the United States, Greenland and Russia. Methods: We compiled the largest data set of existing telemetry data for marine predators in the North American Arctic consisting of 1,283 individuals from 21 species. Data were arranged into four species groups: (a) cetaceans and pinnipeds, (b) polar bears Ursus maritimus (c) seabirds, and (d) fishes to address the following objectives: (a) to identify abundance hotspots for each species group in the summerâautumn and winterâspring; (b) to identify species diversity hotspots across all species groups and extent of overlap with exclusive economic zones; and (c) to perform a gap analysis that assesses amount of overlap between species diversity hotspots with existing protected areas. Results: Abundance and species diversity hotpots during summerâautumn and winterâspring were identified in Baffin Bay, Davis Strait, Hudson Bay, Hudson Strait, Amundsen Gulf, and the Beaufort, Chukchi and Bering seas both within and across species groups. Abundance and species diversity hotpots occurred within the continental slope in summerâautumn and offshore in areas of moving pack ice in winterâspring. Gap analysis revealed that the current level of conservation protection that overlaps species diversity hotspots is low covering only 5% (77,498 km 2 ) in summerâautumn and 7% (83,202 km 2 ) in winterâspring. Main conclusions: We identified several areas of potential importance for Arctic marine predators that could provide policymakers with a starting point for conservation measures given the multitude of threats facing the Arctic. These results are relevant to multilevel and multinational governance to protect this vulnerable ecosystem in our rapidly changing world
Loss of life years after a hip fracture: Effects of age and sex
Background Patients with a hip fracture have a high mortality; however, it is not clear how large the loss of life-years is over an extended observation period
Vulnerability of the North Water ecosystem to climate change
High Arctic ecosystems and Indigenous livelihoods are tightly linked and exposed to climate change, yet assessing their sensitivity requires a long-term perspective. Here, we assess the vulnerability of the North Water polynya, a unique seaice ecosystem that sustains the worldâs northernmost Inuit communities and several keystone Arctic species. We reconstruct mid-to-late Holocene changes in sea ice, marine primary production, and little auk colony dynamics through multi-proxy analysis of marine and lake sediment cores. Our results suggest a productive ecosystem by 4400â4200âcalâyrs b2k coincident with the arrival of the first humans in Greenland. Climate forcing during the late Holocene, leading to periods of polynya instability and marine productivity decline, is strikingly coeval with the human abandonment of Greenland from c. 2200â1200âcalâyrs b2k. Our long-term perspective highlights the future decline of the North Water ecosystem, due to climate warming and changing sea-ice conditions, as an important climate change risk
TEX264 coordinates p97- and SPRTN-mediated resolution of topoisomerase 1-DNA adducts
Eukaryotic topoisomerase 1 (TOP1) regulates DNA topology to ensure efficient DNA replication and transcription. TOP1 is also a major driver of endogenous genome instability, particularly when its catalytic intermediateâa covalent TOP1-DNA adduct known as a TOP1 cleavage complex (TOP1cc)âis stabilised. TOP1ccs are highly cytotoxic and a failure to resolve them underlies the pathology of neurological disorders but is also exploited in cancer therapy where TOP1ccs are the target of widely used frontline anti-cancer drugs. A critical enzyme for TOP1cc resolution is the tyrosyl-DNA phosphodiesterase (TDP1), which hydrolyses the bond that links a tyrosine in the active site of TOP1 to a 3â phosphate group on a single-stranded (ss)DNA break. However, TDP1 can only process small peptide fragments from ssDNA ends, raising the question of how the ~90âkDa TOP1 protein is processed upstream of TDP1. Here we find that TEX264 fulfils this role by forming a complex with the p97 ATPase and the SPRTN metalloprotease. We show that TEX264 recognises both unmodified and SUMO1-modifed TOP1 and initiates TOP1cc repair by recruiting p97 and SPRTN. TEX264 localises to the nuclear periphery, associates with DNA replication forks, and counteracts TOP1ccs during DNA replication. Altogether, our study elucidates the existence of a specialised repair complex required for upstream proteolysis of TOP1ccs and their subsequent resolution
Systematic characterization of deubiquitylating enzymes for roles in maintaining genome integrity.
DNA double-strand breaks (DSBs) are perhaps the most toxic of all DNA lesions, with defects in the DNA-damage response to DSBs being associated with various human diseases. Although it is known that DSB repair pathways are tightly regulated by ubiquitylation, we do not yet have a comprehensive understanding of how deubiquitylating enzymes (DUBs) function in DSB responses. Here, by carrying out a multidimensional screening strategy for human DUBs, we identify several with hitherto unknown links to DSB repair, the G2/M DNA-damage checkpoint and genome-integrity maintenance. Phylogenetic analyses reveal functional clustering within certain DUB subgroups, suggesting evolutionally conserved functions and/or related modes of action. Furthermore, we establish that the DUB UCHL5 regulates DSB resection and repair by homologous recombination through protecting its interactor, NFRKB, from degradation. Collectively, our findings extend the list of DUBs promoting the maintenance of genome integrity, and highlight their potential as therapeutic targets for cancer.This is the author's accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ncb302
Allergen-specific immunotherapy provides immediate, long-term and preventive clinical effects in children and adults: the effects of immunotherapy can be categorised by level of benefit -the centenary of allergen specific subcutaneous immunotherapy
Allergen Specific Immunotherapy (SIT) for respiratory allergic diseases is able to significantly improve symptoms as well as reduce the need for symptomatic medication, but SIT also has the capacity for long-term clinical effects and plays a protective role against the development of further allergies and symptoms. The treatment acts on basic immunological mechanisms, and has the potential to change the pathological allergic immune response. In this paper we discuss some of the most important achievements in the documentation of the benefits of immunotherapy, over the last 2 decades, which have marked a period of extensive research on the clinical effects and immunological background of the mechanisms involved. The outcome of immunotherapy is described as different levels of benefit from early reduction in symptoms over progressive clinical effects during treatment to long-term effects after discontinuation of the treatment and prevention of asthma. The efficacy of SIT increases the longer it is continued and immunological changes lead to potential long-term benefits. SIT alone and not the symptomatic treatment nor other avoidance measures has so far been documented as the therapy with long-term or preventive potential. The allergic condition is driven by a subset of T-helper lymphocytes (Th2), which are characterised by the production of cytokines like IL-4, and IL-5. Immunological changes following SIT lead to potential curative effects. One mechanism whereby immunotherapy suppresses the allergic response is through increased production of IgG4 antibodies. Induction of specific IgG4 is able to influence the allergic response in different ways and is related to immunological effector mechanisms, also responsible for the reduced late phase hyperreactivity and ongoing allergic inflammation. SIT is the only treatment which interferes with the basic pathophysiological mechanisms of the allergic disease, thereby creating the potential for changes in the long-term prognosis of respiratory allergy. SIT should not only be recognised as first-line therapeutic treatment for allergic rhinoconjunctivitis but also as secondary preventive treatment for respiratory allergic diseases
- âŠ