153 research outputs found
On the Synthesis and Physical Properties of Iron Doped SnO2 Nanoparticles
The synthesis of iron doped tin oxide by pulsed laser pyrolysis is reported. The as obtained nanoparticles have a dominant SnO2 phase (as revealed by Wide Angle X-ray Scattering), with particles of the order of 10 nm. The doping with iron or iron oxide triggers magnetic properties as confirmed by SQUID experiments. EDX measurements supported the presence of Fe while Wide Angle X-ray Scattering failed to sense any iron or iron-oxide phase. It is concluded that Fe is well dispersed within the tin-oxide nanoparticles. The coercitive field has a complex dependence on the Fe/Sn content suggesting that the magnetization is not controlled solely by the amount of Fe dispersed within the nanoparticles
Prior intake of new oral anticoagulants adversely affects outcome following surgery for acute type A aortic dissection
Objectives: Oral anticoagulation prior to emergency surgery is associated with an increased risk of perioperative bleeding, especially when this therapy cannot be discontinued or reversed in time. The goal of this study was to analyse the impact of different oral anticoagulants on the outcome of patients who underwent emergency surgery for acute type A aortic dissection (ATAAD).
Methods: This was a single-centre retrospective study of patients treated with oral anticoagulation at the time of surgery for ATAAD. Outcomes of patients on new oral anticoagulant (NOAC) therapy were compared to respective outcomes of patients on Coumadin. Additionally, a survival analysis was performed comparing these 2 groups with patients who were operated on with no prior anticoagulation.
Results: Between January 2013 and April 2020, a total of 437 patients (63.8 ± 11.8 years, 68.4% male) received emergency surgery for ATAAD; 35 (8%) were taking oral anticoagulation at the time of hospital admission: 20 received phenprocoumon; 14, rivaroxaban; and 1, dabigatran. Compared to Coumadin, NOAC was associated with a greater need for blood-product transfusions and haemodynamic compromise. Operative mortality was 53% in the NOAC group and 30% in the Coumadin group. A 5-year survival analysis showed no significant difference between the NOAC and the Coumadin group (P = 0.059). Compared to 402 patients treated during the study period without anticoagulation, patients taking NOAC had significantly worse survival (P = 0.001), whereas that effect was not observed in patients undergoing surgery who were taking Coumadin (P = 0.99).
Conclusions: Emergency surgery for ATAAD in patients taking NOAC is associated with high morbidity and mortality. NOAC are a major risk factor for uncontrollable bleeding and haemodynamic compromise. New treatment strategies must be defined to improve surgical outcomes in these high-risk patients.
Keywords: Acute aortic syndrome; Aortic dissection; Bleeding; Coumadin; DOAC; NOAC; Oral anticoagulation; Type A dissection
Diversity and distribution of genetic variation in gammarids: Comparing patterns between invasive and non-invasive species
© 2017 Published by John Wiley & Sons Ltd. Biological invasions are worldwide phenomena that have reached alarming levels among aquatic species. There are key challenges to understand the factors behind invasion propensity of non-native populations in invasion biology. Interestingly, interpretations cannot be expanded to higher taxonomic levels due to the fact that in the same genus, there are species that are notorious invaders and those that never spread outside their native range. Such variation in invasion propensity offers the possibility to explore, at fine-scale taxonomic level, the existence of specific characteristics that might predict the variability in invasion success. In this work, we explored this possibility from a molecular perspective. The objective was to provide a better understanding of the genetic diversity distribution in the native range of species that exhibit contrasting invasive propensities. For this purpose, we used a total of 784 sequences of the cytochrome c oxidase subunit I of mitochondrial DNA (mtDNA-COI) collected from seven Gammaroidea, a superfamily of Amphipoda that includes species that are both successful invaders (Gammarus tigrinus, Pontogammarus maeoticus, and Obesogammarus crassus) and strictly restricted to their native regions (Gammarus locusta, Gammarus salinus, Gammarus zaddachi, and Gammarus oceanicus). Despite that genetic diversity did not differ between invasive and non-invasive species, we observed that populations of non-invasive species showed a higher degree of genetic differentiation. Furthermore, we found that both geographic and evolutionary distances might explain genetic differentiation in both non-native and native ranges. This suggests that the lack of population genetic structure may facilitate the distribution of mutations that despite arising in the native range may be beneficial in invasive ranges. The fact that evolutionary distances explained genetic differentiation more often than geographic distances points toward that deep lineage divergence holds an important role in the distribution of neutral genetic diversity
Do the same genes underlie parallel phenotypic divergence in different Littorina saxatilis populations?
Parallel patterns of adaptive divergence and speciation are cited as powerful evidence for the role of selection driving these processes. However, it is often not clear whether parallel phenotypic divergence is underlain by parallel genetic changes. Here, we asked about the genetic basis of parallel divergence in the marine snail Littorina saxatilis, which has repeatedly evolved coexisting ecotypes adapted to either crab predation or wave action. We sequenced the transcriptome of snails of both ecotypes from three distant geographical locations (Spain, Sweden and United Kingdom) and mapped the reads to the L. saxatilis reference genome. We identified genomic regions potentially under divergent selection between ecotypes within each country, using an outlier approach based on FST values calculated per locus. In line with previous studies indicating that gene reuse is generally common, we expected to find extensive sharing of outlier loci due to recent shared ancestry and gene flow between at least two of the locations in our study system. Contrary to our expectations, we found that most outliers were country specific, suggesting that much of the genetic basis of divergence is not shared among locations. However, we did find that more outliers were shared than expected by chance and that differentiation of shared outliers is often generated by the same SNPs. We discuss two mechanisms potentially explaining the limited amount of sharing we observed. First, a polygenic basis of divergent traits might allow for multiple distinct molecular mechanisms generating the same phenotypic patterns. Second, additional, location-specific axes of selection that we did not focus on in this study may produce distinct patterns of genetic divergence within each site
Synthesis, docking and evaluation of novel fused pyrimidine compounds as possible lead compounds with antibacterial and antitumor activities
Reaction of a series of hydrazonoyl chlorides with substituted aminopyrimidines afforded good selectivity in most cases leading either to formation of new imidazo[1,2-a]pyrimidine derivatives, or regioisomeric hydrazonamide adducts. The compounds were evaluated for antibacterial and anticancer activities. Screening against 'E. Coli', 'P. aeruginosa', 'S. aureus', 'S. epidermidis', 'B. subtilis' and 'K. rhizophila' did identify several different compound types with MIC of 0.1-0.4 mg/mL. Anticancer evaluation against a HeLa cell line identified one imidazo[1,2-a]pyrimidine lead. An 'in silico' target fishing analysis suggest three possible high value protein targets, Tankyrase-2 (Tank-2), Cyclin-dependent kinase (CDK2) and Epidermal growth factor tyrosine kinase receptor (EGFR), with modelling fit against co-crystallized known ligands. This provides a new structural family lead for further investigation of molecular targets and potential SAR activity development
The Role of Geography in Human Adaptation
Various observations argue for a role of adaptation in recent human evolution, including results from genome-wide studies and analyses of selection signals at candidate genes. Here, we use genome-wide SNP data from the HapMap and CEPH-Human Genome Diversity Panel samples to study the geographic distributions of putatively selected alleles at a range of geographic scales. We find that the average allele frequency divergence is highly predictive of the most extreme FST values across the whole genome. On a broad scale, the geographic distribution of putatively selected alleles almost invariably conforms to population clusters identified using randomly chosen genetic markers. Given this structure, there are surprisingly few fixed or nearly fixed differences between human populations. Among the nearly fixed differences that do exist, nearly all are due to fixation events that occurred outside of Africa, and most appear in East Asia. These patterns suggest that selection is often weak enough that neutral processes—especially population history, migration, and drift—exert powerful influences over the fate and geographic distribution of selected alleles
Hybridization in closely related Rhododendron species:Half of all species-differentiating markers experience serious transmission ratio distortion
An increasing number of studies of hybridization in recent years have revealed that complete reproductive isolation between species is frequently not finalized in more or less closely related organisms. Most of these species do, however, seem to retain their phenotypical characteristics despite the implication of gene flow, highlighting the remaining gap in our knowledge of how much of an organism’s genome is permeable to gene flow, and which factors promote or prevent hybridization. We used AFLP markers to investigate the genetic composition of three populations involving two interfertile Rhododendron species: two sympatric populations, of which only one contained hybrids, and a further hybrid-dominated population. No fixed differences between the species were found, and only 5.8% of the markers showed some degree of species differentiation. Additionally, 45.5% of highly species-differentiating markers experienced significant transmission distortion in the hybrids, which was most pronounced in F1 hybrids, suggesting that factors conveying incompatibilities are still segregating within the species. Furthermore, the two hybrid populations showed stark contrasting composition of hybrids; one was an asymmetrically backcrossing hybrid swarm, while in the other, backcrosses were absent, thus preventing gene flow
Genetic Population Structure in the Antarctic Benthos: Insights from the Widespread Amphipod, Orchomenella franklini
Currently there is very limited understanding of genetic population structure in the Antarctic benthos. We conducted one of the first studies of microsatellite variation in an Antarctic benthic invertebrate, using the ubiquitous amphipod Orchomenella franklini (Walker, 1903). Seven microsatellite loci were used to assess genetic structure on three spatial scales: sites (100 s of metres), locations (1–10 kilometres) and regions (1000 s of kilometres) sampled in East Antarctica at Casey and Davis stations. Considerable genetic diversity was revealed, which varied between the two regions and also between polluted and unpolluted sites. Genetic differentiation among all populations was highly significant (FST = 0.086, RST = 0.139, p<0.001) consistent with the brooding mode of development in O. franklini. Hierarchical AMOVA revealed that the majority of the genetic subdivision occurred across the largest geographical scale, with Nem≈1 suggesting insufficient gene flow to prevent independent evolution of the two regions, i.e., Casey and Davis are effectively isolated. Isolation by distance was detected at smaller scales and indicates that gene flow in O. franklini occurs primarily through stepping-stone dispersal. Three of the microsatellite loci showed signs of selection, providing evidence that localised adaptation may occur within the Antarctic benthos. These results provide insights into processes of speciation in Antarctic brooders, and will help inform the design of spatial management initiatives recently endorsed for the Antarctic benthos
- …