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Abstract

Background: Blindness has evolved repeatedly in cave-dwelling organisms, and many hypotheses have been
proposed to explain this observation, including both accumulation of neutral loss-of-function mutations and
adaptation to darkness. Investigating the loss of sight in cave dwellers presents an opportunity to understand the
operation of fundamental evolutionary processes, including drift, selection, mutation, and migration.

Results: Here we model the evolution of blindness in caves. This model captures the interaction of three forces: (1)
selection favoring alleles causing blindness, (2) immigration of sightedness alleles from a surface population, and (3)
mutations creating blindness alleles. We investigated the dynamics of this model and determined selection-strength
thresholds that result in blindness evolving in caves despite immigration of sightedness alleles from the surface. We
estimate that the selection coefficient for blindness would need to be at least 0.005 (and maybe as high as 0.5) for
blindness to evolve in the model cave-organism, Astyanaxmexicanus.

Conclusions: Our results indicate that strong selection is required for the evolution of blindness in cave-dwelling
organisms, which is consistent with recent work suggesting a high metabolic cost of eye development.
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Background
Blindness has evolved repeatedly across taxa in caves, cre-
ating nearly a thousand cave-dwelling species and many
more sub-populations [1–4]. Surprisingly, many popula-
tions of blind individuals experience some level of immi-
gration, which would be expected to prevent the fixation
of blindness in a newly established population [3–5].
Thus, blind cave-dwelling populations of typically sighted
species pose an interesting challenge to our understand-
ing of evolutionary biology. Namely, how does significant
population differentiation evolve despite homogenizing
immigration?
Several hypotheses have been put forward to explain the

evolution of blindness in cave-dwelling species. Darwin
suggested that eyes would be lost by “disuse” [6]. We now
consider this hypothesis the “neutral-mutation hypoth-
esis” — random mutations can accumulate in genes or
regulatory regions related to sight when, as in caves, there
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is no purifying selection to eliminate them. However,
the accumulation of mutations causing blindness due to
mutation pressure would take a long time to result in fix-
ation of blindness in populations on its own [7]. Thus,
genetic drift has been proposed to accelerate the evolution
of blindness due to mutation pressure [8–10].
Relaxing selection that maintains the eye, however, also

allows for other agents of selection to act on this trait [11].
The “adaptation hypothesis” suggests that there is a cost to
an eye; thus, individuals without eyes have greater fitness
when eyes are not helpful, resulting in the eventual elim-
ination of seeing individuals. This cost may either come
from the energy required to develop a complex structure
or due to the vulnerability of the eye [7, 12–16]. Alterna-
tively, blindness may evolve not due to direct selection but
due to selection for another beneficial trait which results
in reduced eye development through pleiotropy [13].
Much of the work on the evolution of blindness has

focused on cavefishes. The Mexican tetra (Astyanax mex-
icanus), which inhabits surface waters and cave systems in
Mexico, is the most studied species of cave-dwelling fish.
Surface and cave forms of this species are distinct, but can
hybridize. The neutral-mutation hypothesis appears to be
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supported in this cavefish by the observation of a high
number of substitutions in putative eye genes [17–19]. In
addition, no differences have been found in the survival
rate for blind and seeing forms between dark and light
conditions [20].
The adaptation hypothesis has also been supported by

work in this species. Analysis of quantitative trait loci sug-
gests that selection has acted directly to reduce eyes in
the cave populations [14]. Due to a high metabolic cost
of developing and maintaining eye tissue [21], blind fish
may have been favored by low resource availability in the
dark caves. However, several lines of evidence do not sup-
port blindness evolving for energy conservation [13]. An
alternative hypothesis is that selection for improved feed-
ing leads to pleiotropic eye loss without direct selection
for blindness. Increased Hedgehog signaling affects feed-
ing structures, allowing for better foraging, but also causes
the degeneration of eye tissue [13, 22, 23].
While it is clear that direct or indirect selection can

lead to blindness despite immigration, the level of selec-
tion required to induce blindness in cave populations
has not been quantified. Here, we model the effects
of migration, selection, and mutation to determine the
conditions required for the evolution of blindness. This
model allows us to explore migration-selection-mutation
balance. Previous theoretical work has explored this bal-
ance generally [24–31]. However, understanding the the
evolution of cavefish requires application to this system
specifically. For example, in this system, unlike many
examples of local adaptation related to the continent-
island model, the two populations are nearly fixed for
opposite conditions of a trait. Here, we address cave-
fish evolution specifically by allowing for new mutations
and multiple loci potentially related to blindness. We
also focus on population parameters specific to cave-
fish. We find that the amount of selection required to
oppose the force of immigration is high, but consistent
with previous work on metabolic costs in novel environ-
ments and selection in other species. Interestingly, drift
only impacts blindness in the cave population in a lim-
ited range of combinations of selection, dominance, and
migration.

Methods and results
Assumptions
We consider two populations: surface-dwelling and cave-
dwelling. We are interested in determining when the cave
population will evolve blindness, i.e. become mostly com-
prised of blind individuals, as has occurred in numerous
natural systems. We first assume that the surface and cave
populations do not experience drift (i.e. populations are
of infinite size). Additionally, immigration from the sur-
face population into the cave affects the allele frequency
in the cave population, but emigration from the cave to

the surface does not affect the surface population, as we
assume that the surface population is significantly larger
than the cave population. Generations are discrete and
non-overlapping, and mating is random.We track a single
biallelic locus, where B is the sightedness allele and where
b is the blindness allele.
The frequency of b is denoted by Q ∈ [0, 1] in the

surface population and q ∈ [0, 1] in the cave popula-
tion. On the surface, we assume that blindness is strongly
selected against, and Q is dictated by mutation-selection
balance. These and all subsequent variables are described
in Table 1.

Calculating the frequency of the blindness allele
Within the cave, the life cycle is as follows. (1) Embryos
become juveniles and experience constant, directional
selection with relative fitnesses of wbb = 1 + s,wBb =
1 + hs, and wBB = 1, where s ≥ 0 and h ∈ [0, 1]. (2)
Juveniles migrate into and out of the cave such that a
fraction m of adults come from the surface and 1 − m
from the cave, where 0 ≤ m ≤ 1. (3) Adults generate
gametes with one-way mutation, where 0 ≤ u ≤ 1 is
the probability that a functional B allele becomes a non-
functional b allele. (4) Gametes unite randomly to produce
embryos. Given this life cycle, we calculate the allele
frequency of the daughter generation (q′) via standard
equations:

qj = (1 + s)q2 + (1 + hs)q(1 − q)
(1 + s)q2 + 2(1 + hs)q(1 − q) + (1 − q)2

selection

(1a)

qa = qj(1 − m) + Qm immigration (1b)

q′ = qa + (1 − qa)u mutation (1c)

Table 1 Terms and variables

B An allele that causes sightedness

b An allele that causes blindness

q Allele frequency of b in the cave population

Q Allele frequency of b in the surface population

q′ Frequency of b in the cave population in the next generation

�q Change in allele frequency in a generation

s Fitness advantage of b in the cave population

h Dominance level of b in heterozygotes

m Rate of immigration from the surface population to the cave
population

u Mutation rate of B to b

k Number of additive diploid loci

N The size of the population in the cave
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Analysis of the change in allele frequency
The change in allele frequency in one generation is �q =
q′ − q. The first derivative of the dynamics is informa-
tive about the behavior of the model under the influence
of the different parameters. Selection and mutation are
directional forces, and increasing s or u increases �q for
0 ≤ q ≤ 1 (i.e. derivatives are non-negative). Increas-
ing h causes selection to be more effective at low q, as
rare b alleles are exposed to selection, but less effective
at high q, as rare B alleles are sheltered from selection;
increasing h increases �q if 0 < q <

(
1 + √

1 + s
)−1

and decreases it if
(
1 + √

1 + s
)−1

< q < 1 (i.e. the
derivative is positive below this threshold and negative
above it). Migration harmonizes the allele frequency in
the cave population towards the surface population allele
frequency. Thus increasing m increases �q for low q
and decreases �q for high q (i.e. the derivative is pos-
itive only when 0 ≤ q < qz(h, s,Q) ≤ Q, where qz
is a function describing a threshold). However, increas-
ing Q increases �q for 0 ≤ q ≤ 1 (i.e. the derivative is
non-negative).

Identifying equilibrium allele frequencies
The model we have developed is an example of migration-
selection balance [26–28], extended to also include
mutation. An equilibrium exists for this model when
�q = 0. For small s, there is only one equilibrium, and
it is near 0. For large s, there is only one equilibrium, and
it is near 1. Three equilibria will only exist for moderate
levels of selection (Fig. 1). If s = m = u = 0, all forces
of evolution are eliminated and �q = 0 for 0 ≤ q ≤ 1.

A lower bound for any valid equilibrium is mQ(1−u)+u
m(1−u)+u

(Proposition 1). An upper bound for any equilibrium is
1 − m(1 − u)(1 − Q) (Proposition 2). Furthermore, it is
important to note that

Q ≤ mQ(1 − u) + u
m(1 − u) + u

=⇒ Q ≤ q̂ (2)

indicating that the equilibrium frequency in the cave
population will be greater than or equal to the allele fre-
quency in the surface population. Intuitively, this result
is obvious as positive selection and one-way mutation
only add to the frequency of the blindness allele in the
cave.
Assuming s > 0, the solution to �q = 0 are the roots of

the following cubic polynomial

g(q) = Aq3 + Bq2 + Cq + D = 0 (3)

where

A = −s(1 − 2h)

B = s(1−m(1−u)(1−Q)−h(3+u−m(1 − u)(1 − 2Q)))

C = −(m(1 − u) + u) + sh(1 + u − m(1 − u)(1 − 2Q))

D = Qm(1 − u) + u

There are three possible roots of this equation, corre-
sponding to three possible equilibria. Depending on the
parameter values, Eq. 3 may have three real roots or one
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Fig. 1 As selection increases, the evolutionary dynamics of the cave population changes. When s is low (red line; s = 0), there is only one equilibrium:
near 0. As s increases (blue–brown lines, s = 0.05, 0.1, 0.15, 0.2, and 0.25) the local maximum (upper hump) increases and crosses the x-axis,
producing three equilibria. When s gets high enough (pink line; s = 0.3), the local minimum (lower valley) also crosses the x-axis, resulting in one
equilibrium again. The location of the equilibria are marked using vertical lines at the bottom of the chart. For all curvesm = 0.01, h = 0, u = 10−6,
and Q = 0.01. The figure on the right is an enlarged view of a small part of the figure on the left
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real root and two imaginary roots. While the values of
the roots of this polynomial can be expressed analytically,
these equations are too complex to be helpful for under-
standing the system. For simplicity, we will let q̂ represent
any possible equilibrium, and q̂a ≤ q̂b ≤ q̂c, stand for the
roots of Eq. 3.

Protected polymorphism
Rather than tackling the equilibria directly, we first
demonstrate that the cave population has a protected
polymorphism. A protected polymorphism exists if the
allele frequency moves away from both fixation and
extinction, i.e. �q > 0 when q = 0 and �q < 0 when
q = 1. For q = 0, �q = Qm(1 − u) + u and q = 0 will
be an equilibrium only if Qm = 0 and u = 0; otherwise
�q > 0 at q = 0. For q = 1,�q = −m(1 − Q)(1 − u)

and q = 1 will be an equilibrium if m = 0, Q = 1,
or u = 1; otherwise �q < 0. Thus a protected poly-
morphism always exists except at the edge cases Qm =
u = 0,m = 0,u = 1, and Q = 1. In biological
terms, the cave population will be polymorphic despite
directional selection for b if there is some immigration
from the surface population and the surface population is
polymorphic.

Validity of equilibria
An equilibrium is only valid in our model if it is real
and between [0, 1]; otherwise, it is not biologically inter-
pretable in this system. Because there is a protected poly-
morphism, there will be either 1 valid, stable equilibrium,
or 3 valid equilibria in a stable-unstable-stable configura-
tion, depending on the parameter values. While we have
not exhaustively determined the parameter ranges under
which there will be only one valid equilibrium, we have
determined that if h ≥ 1/3 or if h < 1/3 and sh >

m(1−u)+u
1+u−m(1−u)(1−2Q)

, there will be only one valid equilibrium
(Proposition 3).
We can also estimate the amount of selection required

such that g(q) = 0 (Eq. 3):

sq(m, h,u,Q)

= m(1−u)(q−Q)−(1−q)u
q(q−q(q+m(1−Q)(1−u))−h(1−q)(m(1−2Q)(1−u)−(1−2q)−u)+q)

(4)

This equation is not valid for allm ∈ [0, 1]. If the migra-
tion rate is low, m <

(1−q)u
(q−Q)(1−u)

, no level of selection will
make q an equilibrium, as all equilibria will be greater than
q. Similarly, if the migration rate is high,

m >
(1 − q) (h(1 − 2q + u) + q)

(1 − u) (h(1 − q)(1 − 2Q) + q(1 − Q))

no level of selection will make q an equilibrium, as all
equilibria will be less than q.

Dynamics and the evolution of blindness
The dynamics of the evolution of the cave population
depend on the parameter values and the starting allele fre-
quency, q0. — Our model is likely well behaved, e.g. no
limit cycles or chaotic behavior, even though we provide
no formal proof of this. — If there is one equilibrium, then
the frequency of b will evolve monotonically towards it,
i.e. qt → q̂ as t → ∞. If there are three equilibria, then the
frequency of b will evolve monotonically to q̂a if q0 < q̂b
and to q̂c if q0 > q̂b.
When the cave population is founded, its initial allele

frequency will likely match the equilibrium frequency on
the surface (q0 = Q). Because Q < q̂ (Eq. 2), the allele
frequency in the cave population will increase due to
selection until it reaches the lowest equilibrium, i.e. q∞ =
inf{q : 0 ≤ q ≤ 1 and�q = 0}. Whether blindness evolves
in the cave population depends on whether q∞ ≥ q∗,
where q∗ is a researcher-chosen threshold for determin-
ing that the cave population is a “blind” population. For
example, q∗ = 0.5 would specify that the blindness allele
is the majority allele, and q∗ = 0.99 would determine that
the blindness allele is approximately fixed. We can also
focus on phenotypes, and let a = q2 + 2q(1 − q)h mea-
sure the average blind phenotype in the cave population;
then

a∞ ≥ a∗ =⇒ q∞ ≥
√
a∗(1 − 2h) + h2 − h

1 − 2h

We define s∗ as the minimum level of selection required
for cave population to become blind, given the other
parameters, i.e.

s∗ = inf{s : s > 0 and q∞ ≥ q∗ � Q}

For simplicity, we will only consider values of q∗ much
higher than the surface allele frequency. If there is one
equilibrium, s∗ = sq∗(m, h,u,Q); however, if there are
three equilibria, qt will evolve to the lower equilibrium
and q∞ ≈ Q = q∗ (typically). Thus selection needs to
be strong enough such that there is only one equilibrium;
therefore,

s∗ ≈ inf
{
s : s > 0 and s ≥ sq∗(m, h,u,Q)

and �(s,m, h,u,Q) < 0}

where �(s,m, h,u,Q) is the discriminant of Eq. 3.
Figures 2, 3, and 4 plot analytical solutions for s∗ based
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Fig. 2 The level of dominance of the blindness allele (h) affects the level of selection (s) required to produce blind populations. Each line represents
how strong selection must be relative to migration (m) for blindness to evolve in the cave population for a given level of dominance (s∗/m), where
s∗ is the minimum level of selection required for the cave population to become blind. Regions above the curves produce populations that are
blind and regions below do not. Each panel contains a different condition for defining whether the cave population is blind. a For the blind allele to
become the majority allele requires stronger selection when blindness is recessive (h = 0) compared to when the allele for blindness is dominant.
b For the blind phenotype to become the majority phenotype requires stronger selection when blindness is recessive compared to when the allele
for blindness is dominant. c For the blind allele to become fixed requires stronger selection when the allele for blindness is dominant compared to
when it is recessive. d For the blind phenotype to become fixed requires stronger selection when blindness is recessive. The curves were calculated
analytically with u = 10−6 and Q = 0.01
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Fig. 3 The frequency of the blindness allele (Q) in the surface population affects the level of selection (s) required to produce blind populations. The
format of this figure follows Fig. 2: a shows when the blind allele becomes the majority allele; b shows when the blind phenotype becomes the
majority phenotype; c shows when the blind allele becomes fixed; d shows when the blind phenotype becomes fixed. As Q increases, the amount
of selection required to evolve blindness in the cave population decreases. A surface population with a high Q can be considered “pre-adapted” to
the cave. The curves were calculated analytically with u = 10−6 and h = 0.5



Cartwright et al. BMC Evolutionary Biology  (2017) 17:45 Page 6 of 14

m

s/
m

a

10−6 10−5 10−4 0.001 0.01 0.1 1

1

3

10

30

100 10−7

10−6

10−5

10−4

10−3u

q∞ ≥ 0.5

m

s/
m

b

10−6 10−5 10−4 0.001 0.01 0.1 1

1

3

10

30

100

a∞ ≥ 0.5

m

s/
m

c

10−6 10−5 10−4 0.001 0.01 0.1 1

100

1000

104

105

q∞ ≥ 0.99

m
s/

m

d

10−6 10−5 10−4 0.001 0.01 0.1 1

100

1000

104

105

a∞ ≥ 0.99

Fig. 4 The mutation rate of the blindness allele (u) affects the level of selection (s) required to produce blind populations. The format of this figure
follows Fig. 2. As u increases, the amount of selection required to evolve blindness in the cave population decreases for smallm, and blindness will
evolve regardless of selection. The curves were calculated analytically with Q = 0.01 and h = 0.5

on different thresholds. When m � u, the ratio s∗/m is
roughly constant such that if q∞ ≥ q∗ then

s∗

m
≥ max

{
q∗ − Q

q∗(1 − q∗) (q∗ + h(1 − 2q∗))
,
1 − 6Q

h

+2Q − 2
√
Q2 + hQ (1 − 3h(1 − 3Q) − 6Q)

h2

}

(5)

See Appendix for derivation.

The neutral-mutation hypothesis
If blindness evolves neutrally in the cave population (s =
0), the equilibrium allele frequency will be governed by
mutation-migration balance, i.e. q̂ = mQ(1−u)+u

m(1−u)+u . Similar
to s∗, we can define a critical value m∗, such that if m <

m∗, the cave population will evolve blindness.

m∗ = sup{m : q∞ ≥ q∗ � Q} = (1 − q∗)u
(q∗ − Q)(1 − u)

Clearly, if u = 0, the cave population will not evolve
blindness without the influence of selection (or genetic
drift). However, a completely isolated cave (m = 0) will
evolve blindness if there is mutation (u > 0). As the
migration rate increases, the equilibrium allele frequency
decreases such that if m > m∗, the cave population will

not evolve blindness. Similarly, increasing the mutation
rate increases m∗, allowing blindness to evolve for higher
immigration rates and demonstrating the importance of
mutation to the evolution of blindness when selection is
weak.

Recessive blindness
If blindness is recessive (h = 0), we can evaluate the
dynamics of three equilibria in more detail. First, we will
simplify our model by assuming that u � 1 such that
1 − u ≈ 1 and

�q ∝ sq2
[
1 − q − m(1 − Q)

]+[
Qm + u − q (m + u)

]

(6)

Weak-selection approximation
If selection is weak, then an equilibrium exists near q = Q.
We use a second-order Taylor series at q = 0 to deter-
mine the upper bound on s for the presence of three
equilibria (i.e. when selection is so strong that an equi-
librium near Q does not exist). The second-order series
allows us to determine the lower two equilibrium points,
although this approximation is inaccurate as q increases.
This approximation gives us

�q ≈ s(1 − m)q2 − (m + u)q + mQ + u (7)
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after assuming that 1 − Q ≈ 1. This equation has two
roots, which are the lowest two of three total equilibria,

q̂a,1 = m + u − √
(m + u)2 − 4s(1 − m)(mQ + u)

2s(1 − m)

q̂b,1 = m + u + √
(m + u)2 − 4s(1 − m)(mQ + u)

2s(1 − m)

These two roots exist only if

0 <
√

(m + u)2 − 4s(1 − m)(mQ + u) =⇒

s <
(m + u)2

4(1 − m)(mQ + u)

(8)

which provides us with an estimate of the upper bound on
s for the presence of three equilibria.
The derivative of Eq. 7 is d�q

dq (q) = 2s(1−m)q−(m+u),
and an equilibrium will be stable if −2 <

d�q
dq

(
q̂
)

< 0.
From this, it can be easily shown that q̂a,1 is stable and that
q̂b,1 is unstable.

Strong-selection approximation
In order to determine the lower bound on s for the
presence of three equilibria, we assume that selection is
strong enough such that u/s ≈ 0 and Q/s ≈ 0. Therefore,

�q ∝ −q
[
q2 − [1 − m(1 − Q)] q + m/s

]
(9)

and the equilibria can be described as

q̂a,2 = 0

q̂b,2 = 1
2

(

1 − m(1 − Q) −
√

[1 − m(1 − Q)]2 − 4m
s

)

q̂c,2 = 1
2

(

1 − m(1 − Q) +
√

[1 − m(1 − Q)]2 − 4m
s

)

The latter two equilibria will exist only if

s >
4m

[1 − m(1 − Q)]2

which provides us an estimate of the lower bound for the
presence of three equilibria.
The derivative of Eq. 9 is d�q

dq (q) = −3q2 + 2[ 1 − m
(1 − Q)] q − m/s, and it can be easily shown that q̂b,2 is
unstable and q̂c,2 is stable.

Validity of approximations
By substituting q̂a,1 and q̂b,1 back into Eq. 6, we obtain
�q = −sq̂2

(
q̂ − Qm

)
. Thus, �q ≤ 0, which indicates

that q̂a,1 overestimates q̂a and that q̂b,1 underestimates q̂b.
By substituting q̂b,2 and q̂c,2 back into Eq. 6, we find that
�q = Qm + u(1 − q̂). Thus �q ≥ 0, which indicates
that q̂b,2 overestimates q̂b and that q̂c,2 underestimates q̂c.
However, the error in our approximations is slight (Fig. 5).

Dynamics
Based on these approximations, the dynamics of the
recessive-blindness system can be summarized as follows.
First, there are three possible equilibria: q̂a ≈ q̂a,1, q̂b ∈[
q̂b,1, q̂b,2

]
, and q̂c ≈ q̂c,2. Second, there are four possible

equilibria configurations: 1, 2a, 2b, and 2c.
Case 1, (m+u)2

4(1−m)(mQ+u)
< 4m

[1−m(1−Q)]2 : only one equilib-
rium exists, and it is stable. The population will always
evolve towards it.
Case 2, 4m

[1−m(1−Q)]2 <
(m+u)2

4(1−m)(mQ+u)
: depending on the

strength of s, this case may have one of three possible
configurations:
Case 2a, 0 ≤ s < 4m

[1−m(1−Q)]2 : Only one equilibrium
exists, q̂a, and it is stable. The population will always
evolve towards it.

Fig. 5 Our recessive-blindness equilibria approximations are accurate.
The approximations developed in this paper (solid lines) are a good fit
for calculated values of selection (s) that result in equilibrium for a
given frequency of the blindness allele (q; circles) using Eq. 3. The
dashed lines are our approximate bounds for the existence of three
equilibria (i.e. for small and large values of s, there is one equilibrium;
for intermediate values of s there are three possible equilibria). Other
parameters arem = 0.01, u = 10−6, and Q = 0.01
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Case 2b, 4m
[1−m(1−Q)]2 < s <

(m+u)2

4(1−m)(mQ+u)
: All three

equilibria exist; q̂a and q̂c are stable, while q̂b is unstable.
If the population starts below q̂b, it will evolve towards q̂a.
If it starts above q̂b, it will evolve towards q̂c.
Case 2c, (m+u)2

4(1−m)(mQ+u)
< s: only one equilibrium, q̂c,

exists, and it is stable. The population will always evolve
towards it.
Furthermore if q0 = Q, the selection-threshold for

blindness to be established in the cave population is

s∗ ≈ max
{
m(q∗ − Q) − u(1 − q∗)
q∗2 (1 − q∗ − m(1 − Q))

,
(m + u)2

4(1 − m)(mQ + u)

}

(10)

where q∗ is the allele-frequency threshold.

Additive blindness andmultiple alleles
Next we investigate a model where blindness is due to
many additive (h = 0.5) loci of small effect. This model
is motivated by the identification of 12 additive loci cor-
responding to the difference in eye phenotypes between
cave and surface populations of A. mexicanus [14]. First,
we will make the following assumptions: (1) there are k
unlinked loci with two alleles (for sightedness and blind-
ness), (2) in the cave population the fitness of an individual
is 1 + s x

2k , where x is the number of blindness alleles the
individual carries, and (3) m, u, Q, and q0 are identical at
each locus.
Because the forces of evolution are equivalent at every

locus, they will evolve identically, and the change in allele
frequency due to selection is

qj = q
1 + qs + (1 − q) s

2k
1 + qs

(11)

See the appendix for a derivation. Next, we will simplify
our model by assuming that u � 1 such that 1 − 2ku ≈ 1
and

�q ∝ − s(1 − (2k − 1)m)q2 + (s(1 − m(1 − 2kQ))

− 2k(m + u))q + 2k(Qm + u)

(12)

This has a single, stable, valid equilibrium:

which decreases a k increases. Furthermore, ifm � u
s∗

m
≥ 2k(q∗ − Q)

q∗(1 − q∗)
In summary, the frequency of blindness alleles will

increase in the cave populationuntil they reach equilibrium,
and they will be majority alleles if s ≥ s∗ > 4km.

Finite-population simulations
Constantmigration
Cavefish live in small populations and strong levels of drift
may play a significant role in the evolution of blindness
in cave species. To investigate the impact of drift on our
recessive-blindness model, we simulated diploid popula-
tions of size N = 1000 (based on population estimates by
[3]) by modifying our life cycle (Eq. 1) to include a finite
population:

qj = (1 + s)q2 + q(1 − q)
(1 + s)q2 + (1 − q2)

selection (13a)

qm = qj(1 − m) + Qm immigration (13b)

qa ∼ Binomial(qm, 2N)/2N drift (13c)

q′ = qa + (1 − qa)u mutation (13d)

Here the adult population consists of 2N alleles sampled
with replacement from the post-immigration gene pool.
For every simulation, u = 10−6 and Q = 0.01. These

values were chosen because they are believed to be rea-
sonable estimates, and because we previously examined
the impact of varying Q and u (Figs. 3 and 4). We further
explain the impact of altering these choices in the discus-
sion. We set q0 = Q, varied s from 10−6 to 102, and varied
m from 10−8 to 1.
We simulated 100 replicates for each combination of

parameters; simulations were conducted for 10,000 or
5,000,000 generations. For each set of parameters, we
recorded the average q′ frequency across these 100 popu-
lations at specific time points.
Our simulation results for finite populations are qual-

itatively similar to our analytical results for infinite
populations. For high migration rates, the average allele
frequency is similar to the infinite model, except that
drift allows some populations that have three equilibria
to evolve blindness (Fig. 6b). However, at low migration
rates (Qm < u), populations have low average frequency
of b at 10,000 generations, unless s > 1. As immigra-
tion decreased, these populations became dependent on
de novo mutations to produce b, which is a slow process.
At 5 million generations, which is close to the estimated

q̂ = s(1 − m(1 − 2kQ)) − 2k(m + u) + √
(2k(m(Qs − 1) − u) − ms + s)2 + 8ks((2k − 1)m + 1)(mQ + u)

2s((2k − 1)m + 1)
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Fig. 6 Populations evolve blindness in the face of immigration only with the help of strong selection. a The equilibrium frequency of the blindness
allele (q) for an infinite population, and b–d average frequencies of the allele after t generations in finite populations with either constant or
episodic migration. For each combination of selection (s) and migration (m) we conducted 100 replicate simulations with fixed values of the
mutation rate (u = 10−6), frequency of the blindness allele in the surface population (Q = 0.01), and q0 = Q. Colors correspond to the frequency of
the blindness allele for a given combination of s andm, where blue is high frequency (blindness evolved) and red is low (blindness did not evolve).
The solid white line corresponds to the degree of selection required in the infinite population (a) to result in q∞ > 0.5 (s∗0.5). The area between the
solid and dashed lines corresponds to the region where three equilibria exist. If 2Ns � 1, drift is stronger than selection, and if 4Nm � 1, drift is
stronger than migration. IfmQ � u, mutation is the primary force introducing copies of the blindness alleles to the cave population

age of cavefish populations [32], the average allele fre-
quency is a better match to the results from the the
infinite-population model (Fig. 6c); however, it differs in
two respects. (1) When selection is ineffective (2Ns < 1),
the average allele frequency reflects mutation-migration
balance. And (2) when migration is low (4Nm < 1), the
average allele frequency shows increased variation. Thus
drift is the strongest force affecting the change in allele
frequencies in the bottom left of Fig. 6c. For N = 100
(not shown), results are qualitatively similar, but stronger
selection is required to overcome the stronger effects of

drift present at smaller population sizes, which most often
leads to loss of the rare blindness allele.

Episodicmigration
Because cave and surface populations may be connected
intermittently due to flooding, we simulated periods of
immigration followed by periods of isolation following
a first-order Markov process. The probability of switch-
ing between from isolation to immigration or vice versa
was 10% in each generation. Results for the intermittently
connected simulations were nearly identical to previous
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simulations, with the exception that at high levels of
migration and selection, drift was more effective in
increasing average allele frequencies (Fig. 6d).

Multiple loci
To determine the effects of drift with multiple loci, we
implemented the following individual-based simulation:

qj,i = w̄−1
N∑

a=1
waqa,i selection (14a)

qm,i = qj,i(1 − m) + Qm immigration (14b)
qu,i = qm,i + (1 − qm,i)u mutation (14c)
q′
a,i ∼ Binomial(qu,i, 2)/2 drift (14d)

where qa,i is the frequency of blindness allele at the i-
th locus in the a-th individual, wa is the fitness of the
a-th individual, and w̄ is the average fitness. Note that
we use fecundity selection in this simulation to reduce
its complexity. Simulations of 1000 individuals were run
for 10,000 generations with u = 10−6, Q = 0.01, and
a grid of s and m values. The number of loci was k ∈
{1, 2, 4, 6, 12}. For each parameter value, 100 simulations
were run and several summary statistics were calculated:
the average frequency of blindness alleles, the average fit-
ness, the average phenotype, and the average genetic load
in the cave population.
Our stochastic simulations agree with our deterministic

results (Fig. 7 shows infinite and finite results for k = 1
and k = 12). As predicted by the deterministic model,
increasing the number of loci increased the amount of
selection required to evolve blindness in the cave popula-
tion. This result is due to the fact that genes with smaller
effect size show more genetic load due to migration of
surface individuals into the cave. Even when migration
was weak, a smaller effect size decreased the strength of
selection relative to drift.

Discussion
The evolution of blindness in caves has been hypothesized
to result from relaxed selection and mutation pressure
and/or positive selection for alleles that result in eye
loss. However, the degree to which these factors interact
and the theoretical level of selection required to induce
blindness have not been quantified previously.
Here we have shown that for blindness to evolve via

neutral processes, immigration must be rarer than muta-
tion, i.e. the cave must be almost completely isolated from
the surface. If the cave is not completely isolated from the
surface, immigration of surface fish will make it nearly
impossible for blindness to evolve in the cave population
without strong selection favoring the trait. When deter-
mining whether blindness evolves neutrally or adaptively,
it is also important to consider how old cave populations
are. If a blind cave population is much younger than u−1

generations, then it is likely that selection was influential
in driving the rapid evolution of the cave population.

Effects of genetic drift
Cave populations are likely to be small, and intuitively
genetic drift should play a role in the evolution of
blindness in the cave population. In most cases, blindness
alleles are rare in the surface population, and drift is
expected to lead mostly to sighted populations [20]. Drift
also reduces the strength of natural selection such that
2Ns � 1 for adaptive processes to function (Fig. 6c).
Therefore, smaller populations require stronger levels of
selection to eliminate migration load and evolve blind-
ness. Interestingly, drift is only essential to the evolution
of blindness in the cave population in a limited range of
combinations of selection andmigration for which we find
three equilibria.

Effects of dominance
The amount of selection required for blindness to evolve
depends on the migration rate and the level of dominance
of the blindness allele (Fig. 2). For example, if Q = 0.01
and h = 0, the amount of selection needs to be about
25 times the migration rate for a blind allele to become
the major allele. Conversely, if h > 1/3, the amount of
selection only needs to be about three times the migration
rate. The situation is reversed when we look at fixation. If
h = 0, selection needs to be about 100 times the migra-
tion rate for the frequency of the blind allele to exceed
99% in the cave population, and if h = 1, it needs to be
10,000 times greater than the migration rate. If we focus
on phenotypes instead, we see that dominant alleles need
lower levels of positive selection to impact the population
(Fig. 2).

Effects of multiple loci
Increasing the number of unlinked loci underlying the
blindness phenotype increases the amount of selection
needed to evolve blindness. Intuitively, blindness alleles
with small effect reduce migration load less effectively in
the cave population. With all things being equal, a single
allele of large effect would bemore likely to sweep through
the cave population than multiple alleles of small effect.
However, if alleles of large effect tend to be recessive, they
would be less likely to sweep than alleles of small effect
that are additive.

Magnitude of selection
The magnitude of selection coefficients required by
our model to produce blindness given modest levels of
immigration are comparable to observations in many
species. Levels of selection sufficient to produce selective
sweeps in wild populations range from 0.02–0.7 [33–36].
Estimated selection coefficients for drug resistance in
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Fig. 7 Many loci of small effect require stronger selection than a a single locus of large effect to evolve blindness in the face of immigration. a The
equilibrium frequencies of the blindness allele for an infinite population with a single locus and b average frequencies of the allele after t generations
in finite populations of size N (100 replicates). c and d The impact of multiple loci (k = 12) on the evolution of blindness. Colors correspond to the
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Plasmodium falciparum were 0.1–0.7, leading to fixation
in 20–80 generations [35, 36]. For a major advantageous
allele, the average value of s has been estimated as 0.11 in
plants and 0.13 in animals [37, 38].
The well-studied three-spine stickleback (Gasterosteus

aculeatus) exhibits similar strong selection in a novel envi-
ronment. In experiments isolating armored sticklebacks
in freshwater pools, armor was lost within a few gener-
ations due to relaxed selection for defense and positive
selection for the lower cost of development in unarmored
fish [39]. Estimates of selection in this species have ranged
from 0.13–0.16 [40].
The selection coefficient of a blindness allele is deter-

mined not only by its impact on the visual system, but also

by any other pleiotropic effects, such as enhancement to
feeding ability [13]. If an allele produces multiple, adap-
tive phenotypes, its selection coefficient is more likely to
be high enough to promote local adaptation and differen-
tiation between cave and surface populations.

Understanding Astyanaxmexicanus
A. mexicanus is the most well studied cave dwelling
species. This species has inhabited caves for approxi-
mately 2–3 million years [32] or 5 million generations
(generation time is 4–6 months in the lab [41]). Given
this amount of time, neutral processes might explain the
evolution of blindness in cave populations if they were
completely isolated. However, the cave populations are
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not isolated from the surface populations; they receive
immigrants at a rate of 10−4–10−2 per generation [3, 42].
While no fitness difference was detected in laboratory
experiments [20], there are 12 QTLs identified for eye-
related phenotypes, and they show a signature of selection
directly favoring regressive phenotypes in cave popula-
tions [14]. This selection may be due to eye development
imposing a high metabolic cost, particularly for juveniles
[21], such that individuals with regressive eye-phenotypes
require less resources. However, the precise degree of this
selection is unknown.
In this species, our additive model predicts that s would

need to be about 48 times stronger than m for the 12
identified, cave-related alleles [14] to become the major-
ity alleles in cave populations. For selection to be effective
in cave populations (Ne ranges between 400 and 1400
[3, 42]) swould at minimum need to be between 0.005 and
0.5. If we required allele frequencies to reach 90%, these
estimates would be five times higher! These estimates are
high, but within the range of results found previously
for selective sweeps (discussed above). We recognize that
these estimates could be improved if data was available for
surface allele frequencies, mutation rates, and dominance
values.
These coefficients are high enough that laboratory

experiments could have detected a difference between
surface and cave forms; however they did not [20]. One
possible explanation of this discrepancy is that selection
for blindness is due not to survival or reproductive suc-
cess but to genotype-dependent dispersal [43, 44]. Ninety
years ago, Lankester [45] proposed that blindness evolves
in caves because fish with eyes may be attracted to
sources of light and preferentially leave caves. Emigration
of fish from the caves to the surface is common in A.
mexicanus [3, 42]. In our model, emigration of sighted
individuals would act like selection, because individuals
with sightedness alleles would systematically leave the
cave and not contribute to the gene pool. Even a low
level of preferential emigration, e.g. 2%, would provide
a significant boost to local adaptation and the evolution
of blindness in caves. It is quite possible that genotype-
dependent dispersal combined with lower development
costs promotes the elimination of sight in caves despite
the immigration of sightedness alleles from the surface.
Preferential emigration would also explain the fact that
in A. mexicanus only the effects of eye QTLs were con-
sistently regressive, and no other phenotypes were as
consistent [14].

Conclusion
We conclude that in most cases strong selection is nec-
essary for the evolution of blind populations in caves.
This result is consistent with two different observations of
cavefish: (1) phototactic fish may leave caves, effectively

selecting for the maintenance of mostly blind fish, and
(2) the metabolic cost of eyes is very high. Additionally,
the model and results presented in this paper are appli-
cable beyond the evolution of cave populations, expand-
ing existing migration-selection balance theory. We have
developed approximations that allow us to understand
the interaction of selection, migration, and mutation.
Through simulation we have examined the effects of
genetic drift relative to the model and determined that in
some situations it can enhance the power of selection to
drive local adaptation.

Appendix
All the proofs below were validated in Mathematica
(Additional file 1) [46].

Proposition 1 If m > 0 or u > 0, mQ(1−u)+u
m(1−u)+u is a possi-

ble equilibrium, and there is no equilibrium less than it. If
m = u = 0, 0 is an equilibrium.

Proof Case 1. Let f (q) = q′ − q represent the change
in allele frequency over one generation (Eq. 1). Let q̃ =
mQ(1−u)+u
m(1−u)+u . If s = 0 and m > 0 (or u > 0), f (q̃) = 0, and
therefore q̃ is an equilibrium for these parameters. Fur-
thermore, if s ≥ 0, f (q) > 0 ∀q ∈ [

0, q̃). Therefore, there
is no equilibrium lower than q̃.
Case 2. Letm = u = 0, f (0) = 0.

Proposition 2 1−m(1−u)(1−Q) is a possible equilib-
rium, and there is no equilibrium greater than it.

Proof Let q̃ = 1 − m(1 − u)(1 − Q) and h = 0. Since
lims→∞ f (q̃) = 0, q̃ is a potential equilibrium. Further-
more, if 0 ≤ h ≤ 1 and s ≥ 0, f (q) < 0 ∀q ∈ (q̃, 1

]
.

Therefore, there is no equilibrium higher than q̃.

The derivation of a tighter upper bound can be achieved
by not assuming h = 0; however, we do not report it at
this time.

Proposition 3 Let s > 0. Let m > 0 or u > 0. If h ≥ 1/3
or if h < 1/3 and sh >

m(1−u)+u
1+u−m(1−u)(1−2Q)

, g(q) (Eq. 3) has
exactly one root in [0, 1].

Proof Letm > 0 or u > 0. Then g(1) < g(0) and g(1) ≤
0 ≤ g(0). By the intermediate value theorem there is at
least one root in [0, 1]. Let s > 0 and we will show that
there is exactly one root for several cases.
Case 1. Let 1/2 < h ≤ 1. Then g(−∞) < 0 and

g(∞) > 0. By the intermediate value theorem, g(0) has at
least one root below 0, between 0 and 1, and above 1. Since
g(0) is cubic, it can have at most 3 roots; therefore, there
is exactly one root in [0, 1].
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Case 2. Let h = 1/2. g(q) reduces to a quadratic
equation with one root less than 0 and exactly one root in
[0, 1].
Case 3. Let 1/3 ≤ h < 1/2. d2g(q)

dq2 ≤ 0, and g(q) is
concave in [0, 1]. Thus g(q) has exactly one root in [0, 1].
Case 4. Let 0 ≤ h < 1/3 and sh >

m(1−u)+u
1+u−m(1−u)(1−2Q)

.
Then dg(q)

dq (−∞) < 0, dg(q)
dq (0) ≥ 0, dg(q)

dq (1) ≤ 0, and
dg(q)
dq (0) >

dg(q)
dq (1). By the intermediate value theorem,

there must be a local minimum in (−∞, 0] and and a local
maximum in [0, 1]. Thus g(q) has exactly one root in [0, 1].

Derivation of Eq. 5
In order to derive Eq. 5 we first assume that u = 0. Then

lim
m→0

sq∗ (m, h,u,Q)

m
= q∗ − Q

q∗(1 − q∗) (q∗ + h(1 − 2q∗))

However, we also need to determine when �q has only
one root. First we approximate �q by a second-order
Taylor series near q = 0.

�q ≈ s(1 − m) (1 − h(3 + 2hs)) q2

+ (hs(1 − m) − m) q + mQ

Next we find

lim
m→0

inf {s : � (s,m, h,u,Q) < 0}
m

= 1 − 6Q
h

+ 2Q − 2
√
Q2 + hQ (1 − 3h(1 − 3Q) − 6Q)

h2

where � (s,m, h,u,Q) is the discriminant of the Taylor
approximation.
Equation 5 is the maximum of these two values.

Derivation of Eq. 11
To calculate the change in allele frequency due to selec-
tion, when there are many alleles of small effect, we first
assume that each copy of a cave-adaptive allele adds s

2k to
the fitness of an individual in the cave population. There-
fore, an individual who is homozygous for cave-adaptive
alleles at all k loci will have a fitness of 1 + s. Next we
assume that the allele frequency of each locus has the
same frequency, q. Therefore, on average each individual
in the population carries 2kq copies of cave-adaptive alle-
les, and the average fitness is w̄ = 1 + (2kq)( s

2k ) = 1+ qs.
Focusing on a specific locus, and averaging over the other
k − 1 loci, we can calculate marginal genotype fitnesses:

wbb = 1 + qs
k − 1
k

+ s
k

wBb = 1 + qs
k − 1
k

+ s
2k

wBB = 1 + qs
k − 1
k

And the marginal allele fitness for b is

wb = qwbb + (1 − q)wBb = 1 + qs
k − 1
k

+ q
s
k

+ (1 − q)
s
2k

= 1 + qs + (1 − q)
s
2k

Putting this all together:

qj = q
wb
w̄

= q
1 + qs + (1 − q) s

2k
1 + qs

Additional file

Additional file 1: Mathematica notebook verifying the analysis of our
deterministic model. (NB 115 kb)
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