46 research outputs found

    Surfactant degradative plasmids

    No full text
    It has been shown that the degradation of anionlc, cationic and ampholytic surfactants by pseudomonads can be controlled by the plasmids with size of 60–130 kb. Most plasmid strains that degrade surfactants are capable of conjugative transfer and elimination from bacteria cells. Restriction patterns of plasmids do not reveal significant homology between plasmids.Показано, что деградация многих анионных, катионных и амфолитных поверхностно-активных веществ у псевдомонад контролируется плазмидами размером 60–130 тыс. п. н. Большинство плазм ид способны к конъюгативному переносу и элиминации из бактериальных клеток. Полученные первичные рестрикционные карты данных плазм ид имеют значительные различия.Показано, що деградація багатьох аніонних, катіонних та амфолітних поверхнево-активних речовин (ПАР) у псевдомонад контролюються плазмідами розміром 60–130 тис. п. н. Більшість плазмід здатні до кон'югативного переносу та елімінації з бактеріальних клітин. Створені первинні рестрикційні карти плазмід біодеградації ПАР мають значну різницю

    Drought tolerance in Pinus halepensis seed sources as identified by distinctive physiological and molecular markers

    Get PDF
    [EN] Drought is one of the main constraints determining forest species growth, survival and productivity, and therefore one of the main limitations for reforestation or afforestation. The aim of this study is to characterize the drought response at the physiological and molecular level of different Pinus halepensis (common name Aleppo pine) seed sources, previously characterized in field trials as drought-sensitive or drought-tolerant. This approach aims to identify different traits capable of predicting the ability of formerly uncharacterized seedlings to cope with drought stress. Gas-exchange, water potential, photosynthetic pigments, soluble sugars, free amino acids, glutathione and proteomic analyses were carried out on control and drought-stressed seedlings in greenhouse conditions. Gas-exchange determinations were also assessed in field-planted seedlings in order to validate the greenhouse experimental conditions. Drought-tolerant seed sources presented higher values of photosynthetic rates, water use efficiency, photosynthetic pigments and soluble carbohydrates concentrations. We observed the same pattern of variation of photosynthesis rate and maximal efficiency of PSII in field. Interestingly drought-tolerant seed sources exhibited increased levels of glutathione, methionine and cysteine. The proteomic profile of drought tolerant seedlings identified two heat shock proteins and an enzyme related to methionine biosynthesis that were not present in drought sensitive seedlings, pointing to the synthesis of sulfur amino acids as a limiting factor for drought tolerance in Pinus halepensis. Our results established physiological and molecular traits useful as distinctive markers to predict drought tolerance in Pinus halepensis provenances that could be reliably used in reforestation programs in drought prone areas.This study is a part of the research project: "Application of molecular biology techniques in forest restoration in Mediterranean environments, PAID-05-11" funded by the Universitat Politecnica de Valencia (UPV), program for supporting R&D of new multidisciplinary research lines. The authors are grateful to the Ministerio de Economia y Competitividad AGL2014-57431-P. AV was supported by project Survive-2 (CGL2015-69773-C2-2-P MINECO/FEDER) by the Spanish Government and Prometeo program (DESESTRES-Generalitat Valenciana). CEAM is funded by Generalitat Valenciana.Taïbi, K.; Campo García, ADD.; Vilagrosa, A.; Belles Albert, JM.; López-Gresa, MP.; Pla, D.; Calvete Chornet, JJ.... (2017). Drought tolerance in Pinus halepensis seed sources as identified by distinctive physiological and molecular markers. Frontiers in Plant Science. 8:1-13. https://doi.org/10.3389/fpls.2017.01202S1138Alcázar, R., Altabella, T., Marco, F., Bortolotti, C., Reymond, M., Koncz, C., … Tiburcio, A. F. (2010). Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta, 231(6), 1237-1249. doi:10.1007/s00425-010-1130-0Atzmon, N., Moshe, Y., & Schiller, G. (2004). Ecophysiological response to severe drought in Pinus halepensis Mill. trees of two provenances. Plant Ecology (formerly Vegetatio), 171(1/2), 15-22. doi:10.1023/b:vege.0000029371.44518.38Baquedano, F. J., & Castillo, F. J. (2006). Comparative ecophysiological effects of drought on seedlings of the Mediterranean water-saver Pinus halepensis and water-spenders Quercus coccifera and Quercus ilex. Trees, 20(6), 689-700. doi:10.1007/s00468-006-0084-0Baquedano, F. J., Valladares, F., & Castillo, F. J. (2008). Phenotypic plasticity blurs ecotypic divergence in the response of Quercus coccifera and Pinus halepensis to water stress. European Journal of Forest Research, 127(6), 495-506. doi:10.1007/s10342-008-0232-8Bartlett, M. K., Scoffoni, C., & Sack, L. (2012). The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecology Letters, 15(5), 393-405. doi:10.1111/j.1461-0248.2012.01751.xBradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi:10.1016/0003-2697(76)90527-3Chen, H., & Jiang, J.-G. (2010). Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environmental Reviews, 18(NA), 309-319. doi:10.1139/a10-014Cuesta, B., Villar-Salvador, P., Puértolas, J., Jacobs, D. F., & Rey Benayas, J. M. (2010). Why do large, nitrogen rich seedlings better resist stressful transplanting conditions? A physiological analysis in two functionally contrasting Mediterranean forest species. Forest Ecology and Management, 260(1), 71-78. doi:10.1016/j.foreco.2010.04.002Duncan, D. B. (1955). Multiple Range and Multiple F Tests. Biometrics, 11(1), 1. doi:10.2307/3001478Eichel, J., Gonzalez, J. C., Hotze, M., Matthews, R. G., & Schroder, J. (1995). Vitamin-B12-Independent Methionine Synthase from a Higher Plant (Catharanthus Roseus). Molecular Characterization, Regulation, Heterologous Expression, and Enzyme Properties. European Journal of Biochemistry, 230(3), 1053-1058. doi:10.1111/j.1432-1033.1995.tb20655.xFayos, J., Bellés, J. M., López-Gresa, M. P., Primo, J., & Conejero, V. (2006). Induction of gentisic acid 5-O-β-d-xylopyranoside in tomato and cucumber plants infected by different pathogens. Phytochemistry, 67(2), 142-148. doi:10.1016/j.phytochem.2005.10.014Franck, N., Vaast, P., Genard, M., & Dauzat, J. (2006). Soluble sugars mediate sink feedback down-regulation of leaf photosynthesis in field-grown Coffea arabica. Tree Physiology, 26(4), 517-525. doi:10.1093/treephys/26.4.517Freeman, J. L., Persans, M. W., Nieman, K., Albrecht, C., Peer, W., Pickering, I. J., & Salt, D. E. (2004). Increased Glutathione Biosynthesis Plays a Role in Nickel Tolerance in Thlaspi Nickel Hyperaccumulators. The Plant Cell, 16(8), 2176-2191. doi:10.1105/tpc.104.023036Golldack, D., Li, C., Mohan, H., & Probst, N. (2014). Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00151Gomez-Garay, A., Lopez, J. A., Camafeita, E., Bueno, M. A., & Pintos, B. (2013). Proteomic perspective of Quercus suber somatic embryogenesis. Journal of Proteomics, 93, 314-325. doi:10.1016/j.jprot.2013.06.006Groppa, M. D., & Benavides, M. P. (2007). Polyamines and abiotic stress: recent advances. Amino Acids, 34(1), 35-45. doi:10.1007/s00726-007-0501-8Grossnickle, S. C. (2012). Why seedlings survive: influence of plant attributes. New Forests, 43(5-6), 711-738. doi:10.1007/s11056-012-9336-6He, C.-Y., Zhang, J.-G., Duan, A.-G., Sun, H.-G., Fu, L.-H., & Zheng, S.-X. (2007). Proteins responding to drought and high-temperature stress in Pinus armandii Franch. Canadian Journal of Botany, 85(10), 994-1001. doi:10.1139/b07-085Hu, B., Simon, J., Kuster, T. M., Arend, M., Siegwolf, R., & Rennenberg, H. (2012). Nitrogen partitioning in oak leaves depends on species, provenance, climate conditions and soil type. Plant Biology, 15, 198-209. doi:10.1111/j.1438-8677.2012.00658.xKlein, T., Di Matteo, G., Rotenberg, E., Cohen, S., & Yakir, D. (2012). Differential ecophysiological response of a major Mediterranean pine species across a climatic gradient. Tree Physiology, 33(1), 26-36. doi:10.1093/treephys/tps116Labudda, M., & Safiul Azam, F. M. (2014). Glutathione-dependent responses of plants to drought: a review. Acta Societatis Botanicorum Poloniae, 83(1), 3-12. doi:10.5586/asbp.2014.003Leck, M. A., Parker, V. T., & Simpson, R. L. (Eds.). (2008). Seedling Ecology and Evolution. doi:10.1017/cbo9780511815133Lichtenthaler, H. K. (1987). [34] Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Plant Cell Membranes, 350-382. doi:10.1016/0076-6879(87)48036-1Maestre, F. T., & Cortina, J. (2004). Are Pinus halepensis plantations useful as a restoration tool in semiarid Mediterranean areas? Forest Ecology and Management, 198(1-3), 303-317. doi:10.1016/j.foreco.2004.05.040Margolis, H. A., & Brand, D. G. (1990). An ecophysiological basis for understanding plantation establishment. Canadian Journal of Forest Research, 20(4), 375-390. doi:10.1139/x90-056Martinez-Ferri, E., Balaguer, L., Valladares, F., Chico, J. M., & Manrique, E. (2000). Energy dissipation in drought-avoiding and drought-tolerant tree species at midday during the Mediterranean summer. Tree Physiology, 20(2), 131-138. doi:10.1093/treephys/20.2.131Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany, 51(345), 659-668. doi:10.1093/jxb/51.345.659McDowell, N. G. (2011). Mechanisms Linking Drought, Hydraulics, Carbon Metabolism, and Vegetation Mortality. Plant Physiology, 155(3), 1051-1059. doi:10.1104/pp.110.170704Mordukhova, E. A., & Pan, J.-G. (2013). Evolved Cobalamin-Independent Methionine Synthase (MetE) Improves the Acetate and Thermal Tolerance of Escherichia coli. Applied and Environmental Microbiology, 79(24), 7905-7915. doi:10.1128/aem.01952-13Mulet, J. M., Alemany, B., Ros, R., Calvete, J. J., & Serrano, R. (2004). Expression of a plant serine O-acetyltransferase inSaccharomyces cerevisiae confers osmotic tolerance and creates an alternative pathway for cysteine biosynthesis. Yeast, 21(4), 303-312. doi:10.1002/yea.1076Mulet, J. M., Martin, D. E., Loewith, R., & Hall, M. N. (2006). Mutual Antagonism of Target of Rapamycin and Calcineurin Signaling. Journal of Biological Chemistry, 281(44), 33000-33007. doi:10.1074/jbc.m604244200Patakas, A., Nikolaou, N., Zioziou, E., Radoglou, K., & Noitsakis, B. (2002). The role of organic solute and ion accumulation in osmotic adjustment in drought-stressed grapevines. Plant Science, 163(2), 361-367. doi:10.1016/s0168-9452(02)00140-1Peguero-Pina, J. J., Sancho-Knapik, D., Barrón, E., Camarero, J. J., Vilagrosa, A., & Gil-Pelegrín, E. (2014). Morphological and physiological divergences within Quercus ilex support the existence of different ecotypes depending on climatic dryness. Annals of Botany, 114(2), 301-313. doi:10.1093/aob/mcu108Peguero-Pina, J. J., Sisó, S., Flexas, J., Galmés, J., Niinemets, Ü., Sancho-Knapik, D., & Gil-Pelegrín, E. (2017). Coordinated modifications in mesophyll conductance, photosynthetic potentials and leaf nitrogen contribute to explain the large variation in foliage net assimilation rates across Quercus ilex provenances. Tree Physiology, 37(8), 1084-1094. doi:10.1093/treephys/tpx057Pinheiro, C., António, C., Ortuño, M. F., Dobrev, P. I., Hartung, W., Thomas-Oates, J., … Wilson, J. C. (2011). Initial water deficit effects on Lupinus albus photosynthetic performance, carbon metabolism, and hormonal balance: metabolic reorganization prior to early stress responses. Journal of Experimental Botany, 62(14), 4965-4974. doi:10.1093/jxb/err194Pyngrope, S., Bhoomika, K., & Dubey, R. S. (2012). Reactive oxygen species, ascorbate–glutathione pool, and enzymes of their metabolism in drought-sensitive and tolerant indica rice (Oryza sativa L.) seedlings subjected to progressing levels of water deficit. Protoplasma, 250(2), 585-600. doi:10.1007/s00709-012-0444-0Rodríguez-Calcerrada, J., Pérez-Ramos, I. M., Ourcival, J.-M., Limousin, J.-M., Joffre, R., & Rambal, S. (2011). Is selective thinning an adequate practice for adapting Quercus ilex coppices to climate change? Annals of Forest Science, 68(3), 575-585. doi:10.1007/s13595-011-0050-xRuiz-Yanetti, S., Chirino, E., & Bellot, J. (2016). Daily whole-seedling transpiration determined by minilysimeters, allows the estimation of the water requirements of seedlings used for dryland afforestation. Journal of Arid Environments, 124, 341-351. doi:10.1016/j.jaridenv.2015.08.017Sánchez-Gómez, D., Majada, J., Alía, R., Feito, I., & Aranda, I. (2010). Intraspecific variation in growth and allocation patterns in seedlings of Pinus pinaster Ait. submitted to contrasting watering regimes: can water availability explain regional variation? Annals of Forest Science, 67(5), 505-504. doi:10.1051/forest/2010007Serrano, R., Mulet, J. M., Rios, G., Marquez, J. A., Larrinoa, I. igo F. de, Leube, M. P., … Montesinos, C. (1999). A glimpse of the mechanisms of ion homeostasis during salt stress. Journal of Experimental Botany, 50(Special_Issue), 1023-1036. doi:10.1093/jxb/50.special_issue.1023Taïbi, K., del Campo, A. D., Aguado, A., & Mulet, J. M. (2015). The effect of genotype by environment interaction, phenotypic plasticity and adaptation on Pinus halepensis reforestation establishment under expected climate drifts. Ecological Engineering, 84, 218-228. doi:10.1016/j.ecoleng.2015.09.005Taïbi, K., del Campo, A. D., Mulet, J. M., Flors, J., & Aguado, A. (2014). Testing Aleppo pine seed sources response to climate change by using trial sites reflecting future conditions. New Forests, 45(5), 603-624. doi:10.1007/s11056-014-9423-yVerbruggen, N., & Hermans, C. (2008). Proline accumulation in plants: a review. Amino Acids, 35(4), 753-759. doi:10.1007/s00726-008-0061-6Vilagrosa, A., Cortina, J., Gil-Pelegrin, E., & Bellot, J. (2003). Suitability of Drought-Preconditioning Techniques in Mediterranean Climate. Restoration Ecology, 11(2), 208-216. doi:10.1046/j.1526-100x.2003.00172.xVilagrosa, A., Morales, F., Abadía, A., Bellot, J., Cochard, H., & Gil-Pelegrin, E. (2010). Are symplast tolerance to intense drought conditions and xylem vulnerability to cavitation coordinated? An integrated analysis of photosynthetic, hydraulic and leaf level processes in two Mediterranean drought-resistant species. Environmental and Experimental Botany, 69(3), 233-242. doi:10.1016/j.envexpbot.2010.04.013Voss, I., Sunil, B., Scheibe, R., & Raghavendra, A. S. (2013). Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biology, 15(4), 713-722. doi:10.1111/j.1438-8677.2012.00710.xWhite, T. L., Adams, W. T., & Neale, D. B. (Eds.). (2007). Forest genetics. doi:10.1079/9781845932855.0000Williams, M. I., & Dumroese, R. K. (2013). Preparing for Climate Change: Forestry and Assisted Migration. Journal of Forestry, 111(4), 287-297. doi:10.5849/jof.13-016Zhang, Y.-J., Sack, L., Cao, K.-F., Wei, X.-M., & Li, N. (2017). Speed versus endurance tradeoff in plants: Leaves with higher photosynthetic rates show stronger seasonal declines. Scientific Reports, 7(1). doi:10.1038/srep4208

    Auxotrophic Selection Strategy for Improved Production of Coenzyme B-12 in Escherichia coli

    Get PDF
    The production of coenzyme B-12 using well-characterized microorganisms, such as Escherichia coli, has recently attracted considerable attention to meet growing demands of coenzyme B-12 in various applications. In the present study, we designed an auxotrophic selection strategy and demonstrated the enhanced production of coenzyme B-12 using a previously engineered coenzyme B-12-producing E. coli strain. To select a high producer, the coenzyme B-12-independent methionine synthase (metE) gene was deleted in E. coli, thus limiting its methionine synthesis to only that via coenzyme B-12-dependent synthase (encoded by metH). Following the deletion of metE, significantly enhanced production of the specific coenzyme B-12 validated the coenzyme B-12-dependent auxotrophic growth. Further precise tuning of the auxotrophic system by varying the expression of metH substantially increased the cell biomass and coenzyme B-12 production, suggesting that our strategy could be effectively applied to E. coli and other coenzyme B-12-producing strains

    Stabilized MetA decreases the frequencies of persisters in different <i>E. coli</i> strains at elevated temperature.

    No full text
    <p>Cells of the strains W3110 and W3110-LYD (A), WErph<sup>+</sup> and WErph<sup>+</sup>-LYD (B), grown overnight for 16 h in M9 glucose medium at 37 or 42°C, were diluted to an OD<sub>600</sub> of 0.1 in fresh M9 glucose medium supplemented with ampicillin and incubated at 37°C for 10 hours. Samples were analyzed as described in the <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0110504#s2" target="_blank">Materials and Methods</a>.</p

    Stabilization of Homoserine-O-Succinyltransferase (MetA) Decreases the Frequency of Persisters in <i>Escherichia coli</i> under Stressful Conditions

    No full text
    <div><p>Bacterial persisters are a small subpopulation of cells that exhibit multi-drug tolerance without genetic changes. Generally, persistence is associated with a dormant state in which the microbial cells are metabolically inactive. The bacterial response to unfavorable environmental conditions (heat, oxidative, acidic stress) induces the accumulation of aggregated proteins and enhances formation of persister cells in <i>Escherichia coli</i> cultures. We have found that methionine supplementation reduced the frequency of persisters at mild (37°C) and elevated (42°C) temperatures, as well as in the presence of acetate. Homoserine-<i>o</i>-succinyltransferase (MetA), the first enzyme in the methionine biosynthetic pathway, is prone to aggregation under many stress conditions, resulting in a methionine limitation in <i>E. coli</i> growth. Overexpression of MetA induced the greatest number of persisters at 42°C, which is correlated to an increased level of aggregated MetA. Substitution of the native <i>metA</i> gene on the <i>E. coli</i> K-12 WE chromosome by a mutant gene encoding the stabilized MetA led to reduction in persisters at the elevated temperature and in the presence of acetate, as well as lower aggregation of the mutated MetA. Decreased persister formation at 42°C was confirmed also in <i>E. coli</i> K-12 W3110 and a fast-growing WErph+ mutant harboring the stabilized MetA. Thus, this is the first study to demonstrate manipulation of persister frequency under stressful conditions by stabilization of a single aggregation-prone protein, MetA.</p></div

    Influence of stabilized MetA protein on the <i>E.coli</i> WE strain growth under stressful conditions.

    No full text
    <p>The WE and WE-LYD strains were incubated in M9 glucose medium at 44°C for 10 h (A) or in M9 glucose medium (pH 6.0) supplemented with 20 mM sodium acetate at 37°C for 28 h (B) in an automatic growth-measuring incubator. The average of two independent experiments is presented.</p

    Dependence of persister formation on stabilized MetA protein.

    No full text
    <p>Overnight cultures of the strains WE and WE-LYD grown for 16 h in M9 glucose medium at 37 or 42°C were diluted to an OD<sub>600</sub> of 0.1 in fresh M9 glucose medium supplemented with ampicillin (A) or ofloxacin (B) and incubated at 37°C for 10 hours. Samples were analyzed as described in the <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0110504#s2" target="_blank">Materials and Methods</a>. Soluble and insoluble protein fractions were purified from the cultures grown in M9 glucose medium at 37 or 42°C to an OD<sub>600</sub> = 1.0, subjected to 12% SDS-PAGE followed by Western blotting using rabbit anti-MetA antibody (C). The MetA in the samples was quantified through densitometry using WCIF ImageJ software. The MetA amount from the WE cells grown at 37°C was set to 1 (D). The data are presented as the average of two independent experiments.</p

    Effect of L-methionine on the frequency of persisters at different temperatures.

    No full text
    <p>The 16-h cultures of the strains WE (A, B) and JW0195 (C) grown in M9 glucose medium with or without L-methionine (50 µg/ml) at 37 or 42°C were diluted to an OD<sub>600</sub> of 0.1 in fresh M9 glucose medium supplemented with ampicillin (A, C) or ofloxacin (B) and incubated at 37°C for 10 hours. Samples were analyzed as described in the <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0110504#s2" target="_blank">Materials and Methods</a>.</p

    Surfactant degradative plasmids

    No full text
    It has been shown that the degradation of anionlc, cationic and ampholytic surfactants by pseudomonads can be controlled by the plasmids with size of 60–130 kb. Most plasmid strains that degrade surfactants are capable of conjugative transfer and elimination from bacteria cells. Restriction patterns of plasmids do not reveal significant homology between plasmids.Показано, что деградация многих анионных, катионных и амфолитных поверхностно-активных веществ у псевдомонад контролируется плазмидами размером 60–130 тыс. п. н. Большинство плазм ид способны к конъюгативному переносу и элиминации из бактериальных клеток. Полученные первичные рестрикционные карты данных плазм ид имеют значительные различия.Показано, що деградація багатьох аніонних, катіонних та амфолітних поверхнево-активних речовин (ПАР) у псевдомонад контролюються плазмідами розміром 60–130 тис. п. н. Більшість плазмід здатні до кон'югативного переносу та елімінації з бактеріальних клітин. Створені первинні рестрикційні карти плазмід біодеградації ПАР мають значну різницю

    Strains and plasmids used in this study.

    No full text
    <p>Ap<sup>r</sup>, ampicillin resistance; <i>kan</i>, kanamycin resistance gene.</p><p>Strains and plasmids used in this study.</p
    corecore