302 research outputs found

    Safety and efficacy of antenatal milk expressing for women with diabetes in pregnancy: protocol for a randomised controlled trial

    Get PDF
    Many maternity providers recommend that women with diabetes in pregnancy express and store breast milk in late pregnancy so breast milk is available after birth, given (1) infants of these women are at increased risk of hypoglycaemia in the first 24 h of life; and (2) the delay in lactogenesis II compared with women without diabetes that increases their infant\u27s risk of receiving infant formula. The Diabetes and Antenatal Milk Expressing (DAME) trial will establish whether advising women with diabetes in pregnancy (pre-existing or gestational) to express breast milk from 36 weeks gestation increases the proportion of infants who require admission to special or neonatal intensive care units (SCN/NICU) compared with infants of women receiving standard care. Secondary outcomes include birth gestation, breastfeeding outcomes and economic impact

    Prefrontal cortex gyrification index in twins: an MRI study

    Get PDF
    Cortical development and folding seems to be under environmental as well as genetic control. The aim of our study was to estimate the genetic influence on gyrification and cortical volumes, comparing prefrontal gyrification index (GI) in monozygotic (MZ) and dizygotic (DZ) twin pairs, and unrelated pairs. Twenty-four subjects (6 pairs of MZ and 6 pairs of DZ twins) were included in this study. Prefrontal cortical folding (gyrification) was measured by an automated and manual version of the gyrification index (A-GI, M-GI) according to previously published protocols. MR-imaging was performed and 3 representative slices were selected from coronar MR-imaging scans. The volumes of the total brain, temporal lobes, prefrontal lobes, and cerebellum were analyzed, too. To evaluate similarity in GI, absolute differences in GI, and brain volumes as well as intraclass correlations of twin pairs were compared with regard to twin status. Finally, a control group of unrelated pairs was assembled from the first two study groups and analyzed. Compared to unrelated pairs, twin pairs exhibited more similarity concerning different brain volumes and a trend to more similarity concerning A-GI. MZ twins did not present more similarity concerning GI (automatically and manually measured) and volume measurements compared to DZ twins. Different factors, like intrauterine factors, postnatal development conditions, and especially environmental factors might account for the differences between related and unrelated pairs. The nonexistence of a pronounced similarity in MZ twins compared to DZ twins concerning prefrontal GI raises questions about the extent of genetic influence on GI

    Shedding light on plant litter decomposition: Advances, implications and new directions in understanding the role of photodegradation

    Get PDF
    Litter decomposition contributes to one of the largest fluxes of carbon (C) in the terrestrial biosphere and is a primary control on nutrient cycling. The inability of models using climate and litter chemistry to predict decomposition in dry environments has stimulated investigation of non-traditional drivers of decomposition, including photodegradation, the abiotic decomposition of organic matter via exposure to solar radiation. Recent work in this developing field shows that photodegradation may substantially influence terrestrial C fluxes, including abiotic production of carbon dioxide, carbon monoxide and methane, especially in arid and semi-arid regions. Research has also produced contradictory results regarding controls on photodegradation. Here we summarize the state of knowledge about the role of photodegradation in litter decomposition and C cycling and investigate drivers of photodegradation across experiments using a meta-analysis. Overall, increasing litter exposure to solar radiation increased mass loss by 23% with large variation in photodegradation rates among and within ecosystems. This variation was tied to both litter and environmental characteristics. Photodegradation increased with litter C to nitrogen (N) ratio, but not with lignin content, suggesting that we do not yet fully understand the underlying mechanisms. Photodegradation also increased with factors that increased solar radiation exposure (latitude and litter area to mass ratio) and decreased with mean annual precipitation. The impact of photodegradation on C (and potentially N) cycling fundamentally reshapes our thinking of decomposition as a solely biological process and requires that we define the mechanisms driving photodegradation before we can accurately represent photodegradation in global C and N models. © 2012 US Government

    Evaluating hospital websites in Kuwait to improve consumer engagement and access to health information:a cross-sectional analytical study

    Get PDF
    Abstract Background Current advances in information and communication technology have made accessing and obtaining health-related information easier than ever before. Today, many hospital websites use a patient-centric approach to promote engagement and encourage learning for better health-related decision making. However, little is known about the current state of hospital websites in the State of Kuwait. This study aims to evaluate hospital websites in Kuwait and offer recommendations to improve patient engagement and access to health information. Methods This study employs a cross-sectional analytical approach to evaluate hospital websites in Kuwait in 2017. The websites of hospitals that provide in-patient services were identified through a structured search. Only active websites that were available in either English or Arabic were considered. The evaluation of the websites involved a combination of automated and expert- based evaluation methods and was performed across four dimensions: Accessibility, Usability, Presence, and Content. Results Nine hospitals met the inclusion criteria. Most of the websites fell short in all four dimensions. None of the websites passed the accessibility guidelines. The usability of websites varied between hospitals. Overall, the majority of hospitals in Kuwait have rudimentary online presence and their websites require careful reassessment with respect to design, content, and user experience. The websites focus primarily on promoting services provided by the hospital rather than engaging and communicating with patients or providing evidence-based information. Conclusions Healthcare organization and website developers should follow best-practices to improve their websites taking into consideration the quality, readability, objectivity, coverage and currency of the information as well as the design of their websites. Hospitals should leverage social media to gain outreach and better engagement with consumers. The websites should be offered in additional languages commonly spoken by people living in Kuwait. Efforts should be made to ensure that health information on hospital websites are evidence-based and checked by healthcare professionals

    Prediction of epigenetically regulated genes in breast cancer cell lines

    Get PDF
    Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fxed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically signifcant negative correlation between methylation profles and gene expression in the panel of breast cancer cell lines. Subnetwork enrichment of these genes has identifed 35 common regulators with 6 or more predicted markers. In addition to identifying epigenetically regulated genes, we show evidence of differentially expressed methylation patterns between the basal and luminal subtypes. Our results indicate that the proposed computational protocol is a viable platform for identifying epigenetically regulated genes. Our protocol has generated a list of predictors including COL1A2, TOP2A, TFF1, and VAV3, genes whose key roles in epigenetic regulation is documented in the literature. Subnetwork enrichment of these predicted markers further suggests that epigenetic regulation of individual genes occurs in a coordinated fashion and through common regulators

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    • 

    corecore