2,288 research outputs found

    A novel ventilator design for COVID-19 and resource-limited settings

    Get PDF
    There has existed a severe ventilator deficit in much of the world for many years, due in part to the high cost and complexity of traditional ICU ventilators. This was highlighted and exacerbated by the emergence of the COVID-19 pandemic, during which the increase in ventilator production rapidly over ran the global supply chains for components. In response, we propose a new approach to ventilator design that meets the performance requirements for COVID-19 patients, while using components that minimise interference with the existing ventilator supply chains. The majority of current ventilator designs use proportional valves and flow sensors, which remainin short supply over a year into the pandemic. In the proposed design, the core components are on-off valves. Unlike proportional valves, on-off valves are widely available,but accurate control of ventilation using on-off valves is not straight forward. Our proposed solution combines four on-of 0valves, a two-litre reservoir, an oxygen sensor and two pressure sensors. Benchtop testing of a prototype was performed with a commercially available flow analyser and test lungs. We investigated the accuracy and precision of the prototype using both compressed gas supplies and a portable oxygen concentrator, and demonstrated the long-term durability over 15 days. The precision and accuracy of ventilation parameters were within the ranges specified in international guidelines in all tests.A numerical model of the system was developed and validated against experimental data. The model was used to determine usable ranges of valve flow coefficients to increase supply chain flexibility. This new design provides the performance necessary for the majority of patients that require ventilation. Applications include COVID-19 as well as pneumonia, influenza, and tuberculosis, which remain major causes of mortality in low and middleincome countries.The robustness, energy efficiency, ease of maintenance, price and availability of on-off valves are all advantageous over proportional valves. As a result, the proposed ventilator design will cost significantly less to manufacture and maintain than current market designs and has the potential to increase global ventilator availabilit

    Simulation of an optically induced asymmetric deformation of a liquid-liquid interface

    Full text link
    Deformations of liquid interfaces by the optical radiation pressure of a focused laser wave were generally expected to display similar behavior, whatever the direction of propagation of the incident beam. Recent experiments showed that the invariance of interface deformations with respect to the direction of propagation of the incident wave is broken at high laser intensities. In the case of a beam propagating from the liquid of smaller refractive index to that of larger one, the interface remains stable, forming a nipple-like shape, while for the opposite direction of propagation, an instability occurs, leading to a long needle-like deformation emitting micro-droplets. While an analytical model successfully predicts the equilibrium shape of weakly deformed interface, very few work has been accomplished in the regime of large interface deformations. In this work, we use the Boundary Integral Element Method (BIEM) to compute the evolution of the shape of a fluid-fluid interface under the effect of a continuous laser wave, and we compare our numerical simulations to experimental data in the regime of large deformations for both upward and downward beam propagation. We confirm the invariance breakdown observed experimentally and find good agreement between predicted and experimental interface hump heights below the instability threshold

    A Theory of Challenge and Threat States in Athletes: a revised conceptualization

    Get PDF
    The Theory of Challenge and Threat States in Athletes (TCTSA) provides a psychophysiological framework for how athletes anticipate motivated performance situations. The purpose of this review is to discuss how research has addressed the 15 predictions made by the TCTSA, to evaluate the mechanisms underpinning the TCTSA in light of the research that has emerged in the last ten years, and to inform a revised TCTSA (TCTSA-R). There was support for many of the 15 predictions in the TCTSA, with two main areas for reflection identified; to understand the physiology of challenge and to re-evaluate the concept of resource appraisals. This re-evaluation informs the TCTSA-R which elucidates the physiological changes, predispositions, and cognitive appraisals that mark challenge and threat states. First, the relative strength of the sympathetic nervous system response is outlined as a determinant of challenge and threat patterns of reactivity and we suggest that oxytocin and neuropeptide Y are also key indicators of an adaptive approach to motivated performance situations and can facilitate a challenge state. Second, although predispositions were acknowledged within the TCTSA, how these may influence challenge and threat states was not specified. In the TCTSA-R it is proposed that one’s propensity to appraise stressors as a challenge that most strongly dictates acute cognitive appraisals. Third, in the TCTSA-R a more parsimonious integration of Lazarusian ideas of cognitive appraisal and challenge and threat is proposed. Given that an athlete can make both challenge and threat primary appraisals and can have both high or low resources compared to perceived demands, a 2x2 bifurcation theory of challenge and threat is proposed. This reflects polychotomy of four parts; high challenge, low challenge, low threat, and high threat. For example, in low threat, an athlete can evince a threat state but still perform well so long as they perceive high resources. Consequently, we propose suggestions for research concerning measurement tools and a reconsideration of resources to include social support. Finally, applied recommendations are made based on adjusting demands and enhancing resources.N/

    Deconstructing interventions: approaches to studying behavior change techniques across obesity interventions

    Get PDF
    Deconstructing interventions into the specific techniques that are used to change behavior represents a new frontier in behavioral intervention research. This paper considers opportunities and challenges in employing the Behavior Change Techniques Taxonomy (BCTTv1) developed by Michie and colleagues, to code the behavior change techniques (BCTs) across multiple interventions addressing obesity and capture dose received at the technique level. Numerous advantages were recognized for using a shared framework for intervention description. Coding interventions at levels of the social ecological framework beyond the individual level, separate coding for behavior change initiation vs. maintenance, fidelity of BCT delivery, accounting for BCTs mode of delivery, and tailoring BCTs, present both challenges and opportunities. Deconstructing interventions and identifying the dose required to positively impact health-related outcomes could enable important gains in intervention science

    OFLOPS: An Open Framework for Openflow Switch Evaluation,” in PAM,

    Get PDF
    Abstract. Recent efforts in software-defined networks, such as OpenFlow, give unprecedented access into the forwarding plane of networking equipment. When building a network based on OpenFlow however, one must take into account the performance characteristics of particular OpenFlow switch implementations. In this paper, we present OFLOPS, an open and generic software framework that permits the development of tests for OpenFlow-enabled switches, that measure the capabilities and bottlenecks between the forwarding engine of the switch and the remote control application. OFLOPS combines hardware instrumentation with an extensible software framework. We use OFLOPS to evaluate current OpenFlow switch implementations and make the following observations: (i) The switching performance of flows depends on applied actions and firmware. (ii) Current OpenFlow implementations differ substantially in flow updating rates as well as traffic monitoring capabilities. (iii) Accurate OpenFlow command completion can be observed only through the data plane. These observations are crucial for understanding the applicability of OpenFlow in the context of specific use-cases, which have requirements in terms of forwarding table consistency, flow setup latency, flow space granularity, packet modification types, and/or traffic monitoring abilities

    OFLOPS: An Open Framework for Openflow Switch Evaluation,” in PAM,

    Get PDF
    Abstract. Recent efforts in software-defined networks, such as OpenFlow, give unprecedented access into the forwarding plane of networking equipment. When building a network based on OpenFlow however, one must take into account the performance characteristics of particular OpenFlow switch implementations. In this paper, we present OFLOPS, an open and generic software framework that permits the development of tests for OpenFlow-enabled switches, that measure the capabilities and bottlenecks between the forwarding engine of the switch and the remote control application. OFLOPS combines hardware instrumentation with an extensible software framework. We use OFLOPS to evaluate current OpenFlow switch implementations and make the following observations: (i) The switching performance of flows depends on applied actions and firmware. (ii) Current OpenFlow implementations differ substantially in flow updating rates as well as traffic monitoring capabilities. (iii) Accurate OpenFlow command completion can be observed only through the data plane. These observations are crucial for understanding the applicability of OpenFlow in the context of specific use-cases, which have requirements in terms of forwarding table consistency, flow setup latency, flow space granularity, packet modification types, and/or traffic monitoring abilities

    Examining the antecedents of challenge and threat states: The influence of perceived required effort and support availability

    Get PDF
    To date, limited research has explicitly examined the antecedents of challenge and threat states proposed by the biopsychosocial model. Thus, the aim of the present study was to examine the influence of perceived required effort and support availability on demand/resource evaluations, challenge and threat states, and motor performance. A 2 (required effort; high, low) � 2 (support availability; available, not available) between-subjects design was used with one hundred and twenty participants randomly assigned to one of four experimental conditions. Participants received instructions designed to manipulate perceptions of required effort and support availability before demand/resource evaluations and cardiovascular responses were assessed. Participants then performed the novel motor task (laparoscopic surgery) while performance was recorded. Participants in the low perceived required effort condition evaluated the task as more of a challenge (i.e., resources outweighed demands), exhibited a cardiovascular response more indicative of a challenge state (i.e., higher cardiac output and lower total peripheral resistance), and performed the task better (i.e., quicker completion time) than those in the high perceived required effort condition. However, perceptions of support availability had no significant impact on participants' demand/resource evaluations, cardiovascular responses, or performance. Furthermore, there was no significant interaction effect between perceptions of required effort and support availability. The findings suggest that interventions aimed at promoting a challenge state should include instructions that help individuals perceive that the task is not difficult and requires little physical and mental effort to perform effectively

    Deconstructing interventions: approaches to studying behavior change techniques across obesity interventions

    Get PDF
    Deconstructing interventions into the specific techniques that are used to change behavior represents a new frontier in behavioral intervention research. This paper considers opportunities and challenges in employing the Behavior Change Techniques Taxonomy (BCTTv1) developed by Michie and colleagues, to code the behavior change techniques (BCTs) across multiple interventions addressing obesity and capture dose received at the technique level. Numerous advantages were recognized for using a shared framework for intervention description. Coding interventions at levels of the social ecological framework beyond the individual level, separate coding for behavior change initiation vs. maintenance, fidelity of BCT delivery, accounting for BCTs mode of delivery, and tailoring BCTs, present both challenges and opportunities. Deconstructing interventions and identifying the dose required to positively impact health-related outcomes could enable important gains in intervention science

    Synthesis of carbohydrate capped silicon nanoparticles and their reduced cytotoxicity, in vivo toxicity, and cellular uptake

    Get PDF
    The development of smart targeted nanoparticles (NPs) that can identify and deliver drugs at a sustained rate directly to cancer cells may provide better efficacy and lower toxicity for treating primary and advanced metastatic tumors. Obtaining knowledge of the diseases at the molecular level can facilitate the identification of biological targets. In particular, carbohydrate‐mediated molecular recognitions using nano‐vehicles are likely to increasingly affect cancer treatment methods, opening a new area in biomedical applications. Here, silicon NPs (SiNPs) capped with carbohydrates including galactose, glucose, mannose, and lactose are successfully synthesized from amine terminated SiNPs. The MTT [3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide] analysis shows an extensive reduction in toxicity of SiNPs by functionalizing with carbohydrate moiety both in vitro and in vivo. Cellular uptake is investigated with flow cytometry and confocal fluorescence microscope. The results show the carbohydrate capped SiNPs can be internalized in the cells within 24 h of incubation, and can be taken up more readily by cancer cells than noncancerous cells. Moreover, these results reinforce the use of carbohydrates for the internalization of a variety of similar compounds into cancer cells
    corecore