671 research outputs found

    Superconductivity and non-metallicity induced by doping the topological insulators Bi2Se3 and Bi2Te3

    Full text link
    We show that by Ca-doping the Bi2Se3 topological insulator, the Fermi level can be fine tuned to fall inside the band gap and therefore suppress the bulk conductivity. Non-metallic Bi2Se3 crystals are obtained. On the other hand, the Bi2Se3 topological insulator can also be induced to become a bulk superconductor, with Tc ~ 3.8 K, by copper intercalation in the van der Waals gaps between the Bi2Se3 layers. Likewise, an as-grown crystal of metallic Bi2Te3 can be turned into a non-metallic crystal by slight variation of the Te content. The Bi2Te3 topological insulator shows small amounts of superconductivity with Tc ~ 5.5 K when reacted with Pd to form materials of the type PdxBi2Te3

    Critical points in edge tunneling between generic FQH states

    Full text link
    A general description of weak and strong tunneling fixed points is developed in the chiral-Luttinger-liquid model of quantum Hall edge states. Tunneling fixed points are a subset of `termination' fixed points, which describe boundary conditions on a multicomponent edge. The requirement of unitary time evolution at the boundary gives a nontrivial consistency condition for possible low-energy boundary conditions. The effect of interactions and random hopping on fixed points is studied through a perturbative RG approach which generalizes the Giamarchi-Schulz RG for disordered Luttinger liquids to broken left-right symmetry and multiple modes. The allowed termination points of a multicomponent edge are classified by a B-matrix with rational matrix elements. We apply our approach to a number of examples, such as tunneling between a quantum Hall edge and a superconductor and tunneling between two quantum Hall edges in the presence of interactions. Interactions are shown to induce a continuous renormalization of effective tunneling charge for the integrable case of tunneling between two Laughlin states. The correlation functions of electronlike operators across a junction are found from the B matrix using a simple image-charge description, along with the induced lattice of boundary operators. Many of the results obtained are also relevant to ordinary Luttinger liquids.Comment: 23 pages, 6 figures. Xiao-Gang Wen: http://dao.mit.edu/~we

    The UK risk assessment scheme for all non-native species

    Get PDF
    1. A pest risk assessment scheme, adapted from the EPPO (European and Mediterranean Plant Protection Organisation) scheme, was developed to assess the risks posed to UK species, habitats and ecosystems by non-native taxa. 2. The scheme provides a structured framework for evaluating the potential for non-native organisms, whether intentional or unintentional introductions, to enter, establish, spread and cause significant impacts in all or part of the UK. Specialist modules permit the relative importance of entry pathways, the vulnerability of receptors and the consequences of policies to be assessed and appropriate risk management options to be selected. Spreadsheets for summarising the level of risk and uncertainty, invasive attributes and economic impact were created. In addition, new methods for quantifying economic impact and summarising risk and uncertainty were explored. 3. Although designed for the UK, the scheme can readily be applied elsewhere

    S-matrices for Perturbed N=2 Superconformal Field Theory from quantum groups

    Full text link
    S-matrices for integrable perturbations of N=2N=2 superconformal field theories are studied. The models we consider correspond to perturbations of the coset theory Gk×Hgh/Hk+ghG_k \times H_{g-h} /H_{k+g-h} . The perturbed models are closely related to G^\hat G-affine Toda theories with a background charge tuned to HH. Using the quantum group restriction of the affine Toda theories we derive the S-matrix.Comment: 29 pages 2 figure

    Exciting, Cooling And Vortex Trapping In A Bose-Condensed Gas

    Full text link
    A straight forward numerical technique, based on the Gross-Pitaevskii equation, is used to generate a self-consistent description of thermally-excited states of a dilute boson gas. The process of evaporative cooling is then modelled by following the time evolution of the system using the same equation. It is shown that the subsequent rethermalisation of the thermally-excited state produces a cooler coherent condensate. Other results presented show that trapping vortex states with the ground state may be possible in a two-dimensional experimental environment.Comment: 9 pages, 7 figures. It's worth the wait! To be published in Physical Review A, 1st February 199

    Lattice Analogues of N=2N=2 Superconformal Models via Quantum Group Truncation

    Full text link
    We obtain lattice models whose continuum limits correspond to N=2N=2 superconformal coset models. This is done by taking the well known vertex model whose continuum limit is the G×G/GG \times G/G conformal field theory, and twisting the transfer matrix and modifying the quantum group truncation. We find that the natural order parameters of the new models are precisely the chiral primary fields. The integrable perturbations of the conformal field theory limit also have natural counterparts in the lattice formulation, and these can be incorporated into an affine quantum group structure. The topological, twisted N=2N=2 superconformal models also have lattice analogues, and these emerge as an intermediate part of our analysis.Comment: 25 pages and 2 figure

    The pressure of hot QCD up to g^6 ln(1/g)

    Full text link
    The free energy density, or pressure, of QCD has at high temperatures an expansion in the coupling constant g, known so far up to order g^5. We compute here the last contribution which can be determined perturbatively, g^6 ln(1/g), by summing together results for the 4-loop vacuum energy densities of two different three-dimensional effective field theories. We also demonstrate that the inclusion of the new perturbative g^6 ln(1/g) terms, once they are summed together with the so far unknown perturbative and non-perturbative g^6 terms, could potentially extend the applicability of the coupling constant series down to surprisingly low temperatures.Comment: 18 pages. Small clarifications added. To appear in Phys.Rev.

    Atom lasers: production, properties and prospects for precision inertial measurement

    Full text link
    We review experimental progress on atom lasers out-coupled from Bose-Einstein condensates, and consider the properties of such beams in the context of precision inertial sensing. The atom laser is the matter-wave analog of the optical laser. Both devices rely on Bose-enhanced scattering to produce a macroscopically populated trapped mode that is output-coupled to produce an intense beam. In both cases, the beams often display highly desirable properties such as low divergence, high spectral flux and a simple spatial mode that make them useful in practical applications, as well as the potential to perform measurements at or below the quantum projection noise limit. Both devices display similar second-order correlations that differ from thermal sources. Because of these properties, atom lasers are a promising source for application to precision inertial measurements.Comment: This is a review paper. It contains 40 pages, including references and figure

    Fluctuations, dissipation and the dynamical Casimir effect

    Full text link
    Vacuum fluctuations provide a fundamental source of dissipation for systems coupled to quantum fields by radiation pressure. In the dynamical Casimir effect, accelerating neutral bodies in free space give rise to the emission of real photons while experiencing a damping force which plays the role of a radiation reaction force. Analog models where non-stationary conditions for the electromagnetic field simulate the presence of moving plates are currently under experimental investigation. A dissipative force might also appear in the case of uniform relative motion between two bodies, thus leading to a new kind of friction mechanism without mechanical contact. In this paper, we review recent advances on the dynamical Casimir and non-contact friction effects, highlighting their common physical origin.Comment: 39 pages, 4 figures. Review paper to appear in Lecture Notes in Physics, Volume on Casimir Physics, edited by Diego Dalvit, Peter Milonni, David Roberts, and Felipe da Rosa. Minor changes, a reference adde
    corecore