103 research outputs found

    Synthesis of two SAPAP3 isoforms from a single mRNA is mediated via alternative translational initiation

    Get PDF
    In mammalian neurons, targeting and translation of specific mRNAs in dendrites contribute to synaptic plasticity. After nuclear export, mRNAs designated for dendritic transport are generally assumed to be translationally dormant and activity of individual synapses may locally trigger their extrasomatic translation. We show that the long, GC-rich 5′-untranslated region of dendritic SAPAP3 mRNA restricts translation initiation via a mechanism that involves an upstream open reading frame (uORF). In addition, the uORF enables the use of an alternative translation start site, permitting synthesis of two SAPAP3 isoforms from a single mRNA. While both isoforms progressively accumulate at postsynaptic densities during early rat brain development, their levels relative to each other vary in different adult rat brain areas. Thus, alternative translation initiation events appear to regulate relative expression of distinct SAPAP3 isoforms in different brain regions, which may function to influence synaptic plasticity

    PH wave-front propagation in the urea-urease reaction

    Get PDF
    The urease-catalyzed hydrolysis of urea displays feedback that results in a switch from acid (pH ∼3) to base (pH ∼9) after a controllable period of time (from 10 to \u3e5000 s). Here we show that the spatially distributed reaction can support pH wave fronts propagating with a speed of the order of 0.1-1 mm min-1. The experimental results were reproduced qualitatively in reaction-diffusion simulations including a Michaelis-Menten expression for the urease reaction with a bell-shaped rate-pH dependence. However, this model fails to predict that at lower enzyme concentrations, the unstirred reaction does not always support fronts when the well-stirred reaction still rapidly switches to high pH. © 2012 by the Biophysical Society

    AUX1-mediated root hair auxin influx governs SCFTIR1/AFB-type Ca2+ signaling

    Get PDF
    Auxin is a key regulator of plant growth and development, but the causal relationship between hormone transport and root responses remains unresolved. Here we describe auxin uptake, together with early steps in signaling, in Arabidopsis root hairs. Using intracellular microelectrodes we show membrane depolarization, in response to IAA in a concentration- and pH-dependent manner. This depolarization is strongly impaired in aux1 mutants, indicating that AUX1 is the major transporter for auxin uptake in root hairs. Local intracellular auxin application triggers Ca2+ signals that propagate as long-distance waves between root cells and modulate their auxin responses. AUX1-mediated IAA transport, as well as IAA- triggered calcium signals, are blocked by treatment with the SCFTIR1/AFB - inhibitor auxinole. Further, they are strongly reduced in the tir1afb2afb3 and the cngc14 mutant. Our study reveals that the AUX1 transporter, the SCFTIR1/AFB receptor and the CNGC14 Ca2+ channel, mediate fast auxin signaling in roots

    A case of behavioural diversification in male floral function – the evolution of thigmonastic pollen presentation

    Get PDF
    The authors gratefully acknowledge funding provided by an Else-Neumann-Stipendium (http://www.fu-berlin.de/sites/promovieren/drs/nachwuchs/nachwuchs/nafoeg.html), Deutscher Akademischer Austausch Dienst (DAAD) and botconsult GmbH at different stages of data acquisition. We thank Tobias Grass, Joana Bergmann and Franziska Weber (Freie Universität Berlin) for help with data collection in the field and in the greenhouse. Nicole Schmandt, Federico Luebert, Juliana Chacón and Dietmar Quant (Universität Bonn) provided help in the molecular laboratory and the edition of the molecular dataset. We furthermore thank Markus Ackermann (Koblenz) for providing photographs, Philipp Klein (Berlin) for editing the video and Katy Jones (Berlin) for helpful comments on an earlier version of the manuscript. Rafael Acuña has been supported by the ALECOSTA scholarship program. Coverage of the article processing charge by the German Research Foundation via the Open Access Publication Fund of the Freie Universität Berlin is gratefully acknowledged.Peer reviewedPublisher PD

    Molecular Composition of Staufen2-Containing Ribonucleoproteins in Embryonic Rat Brain

    Get PDF
    Messenger ribonucleoprotein particles (mRNPs) are used to transport mRNAs along neuronal dendrites to their site of translation. Numerous mRNA-binding and regulatory proteins within mRNPs finely regulate the fate of bound-mRNAs. Their specific combination defines different types of mRNPs that in turn are related to specific synaptic functions. One of these mRNA-binding proteins, Staufen2 (Stau2), was shown to transport dendritic mRNAs along microtubules. Its knockdown expression in neurons was shown to change spine morphology and synaptic functions. To further understand the molecular mechanisms by which Stau2 modulates synaptic function in neurons, it is important to identify and characterize protein co-factors that regulate the fate of Stau2-containing mRNPs. To this end, a proteomic approach was used to identify co-immunoprecipitated proteins in Staufen2-containing mRNPs isolated from embryonic rat brains. The proteomic approach identified mRNA-binding proteins (PABPC1, hnRNP H1, YB1 and hsc70), proteins of the cytoskeleton (α- and β-tubulin) and RUFY3 a poorly characterized protein. While PABPC1 and YB1 associate with Stau2-containing mRNPs through RNAs, hsc70 is directly bound to Stau2 and this interaction is regulated by ATP. PABPC1 and YB1 proteins formed puncta in dendrites of embryonic rat hippocampal neurons. However, they poorly co-localized with Stau2 in the large dendritic complexes suggesting that they are rather components of Stau2-containing mRNA particles. All together, these results represent a further step in the characterization of Stau2-containing mRNPs in neurons and provide new tools to study and understand how Stau2-containing mRNPs are transported, translationally silenced during transport and/or locally expressed according to cell needs

    Touch induces ATP release in Arabidopsis roots that is modulated by the heterotrimeric G-protein complex

    Get PDF
    Amongst the many stimuli orienting the growth of plant roots, of critical importance are the touch signals generated as roots explore the mechanically complex soil environment. However, the molecular mechanisms behind these sensory events remain poorly defined. We report an impaired obstacle-avoiding response of roots in Arabidopsis lacking a heterotrimeric G protein. Obstacle avoidance may utilize a touch-induced release of ATP to the extracellular space. While sequential touch stimulation revealed a strong refractory period for ATP release in response to mechanostimulation in wild-type plants, the refractory period in mutants was attenuated, resulting in extracellular ATP accumulation. We propose that ATP acts as an extracellular signal released by mechanostimulation and that the G-protein complex is needed for fine-tuning this response

    Functional impairment of systemic scleroderma patients with digital ulcerations: Results from the DUO registry

    Get PDF
    corecore