72 research outputs found

    Cardiotrophin-1 plasma levels are associated with the severity of hypertrophy in hypertrophic cardiomyopathy

    Get PDF
    AIMS: Cardiotrophin-1 (CT-1) is a cytokine that induces hypertrophy in cardiomyocytes and is associated with left ventricular hypertrophy (LVH) in hypertensive patients. The objective of this study was to evaluate whether plasma CT-1 is associated with hypertrophic cardiomyopathy (HCM). METHODS AND RESULTS: The study was performed in 124 patients with HCM. All patients underwent a full clinical evaluation and an echocardiogram. Left ventricular hypertrophy was evaluated by the measurement of the maximal LV wall thickness and the Spirito's LVH score. Plasma CT-1 was measured by an enzyme-linked immunosorbent assay. Compared with controls, patients with HCM exhibited higher (P /=30 mm) than in patients with mild or moderate LVH (maximal LV wall thickness <30 mm). CONCLUSIONS: These findings show that plasma CT-1 is associated with the severity of LVH in patients with HCM. Further studies are required to ascertain whether CT-1 is a diagnostic biomarker of this cardiomyopathy

    Genetic evaluation, familial screening and exercise

    Get PDF
    A prática de atividade física regular é benéfica para pessoas de todas as idades, gêneros e etnias.1 Se, por um lado, a prática do exercício moderado é considerada uma atividade saudável e favorável ao sistema cardiovascular, por outro, o exercício de alta intensidade por longo período de tempo pode aumentar o risco de morte súbita (MS).2 Mesmo considerando que um número imenso de pessoas faça exercício diariamente, a MS nesse cenário é considerada uma entidade rara. No entanto, a sua prevenção pode ser difícil e a mesma é de grande repercussão, principalmente quando incide em jovens praticantes de exercício recreativo ou em atletas. Do ponto de vista epidemiológico, a MS de origem cardíaca afeta entre 200 e 400 mil indivíduos nos Estados Unidos (EUA) anualmente.3 No âmbito dos esportes, estima-se que em torno de 200 atletas ao ano apresentem um evento fatal.4 Na Espanha, o registro nacional de MS em atletas descreveu 180 casos de 1995 até 2007, sugerindo uma incidência de 15 a 20 casos por ano.5 Em atletas, a avaliação pré-participação (APP) está indicada, podendo ser eficaz para a prevenção de MS cardíaca nesse contexto.6 Contudo, esse tipo de rastreamento apresenta grande variabilidade entre diferentes países e entidades que o realizam. No tocante à avaliação genética, essa se encontra relegada somente a casos específicos no contexto dos esportes. Nessa revisão descreveremos aspectos básicos da avaliação genética, assim como as indicações da análise molecular e sua correta interpretação clínica, tanto para esportistas recreativos ou amadores, quanto para os atletas de alto rendimento.Regular physical activity practice benefits individuals of all ages, sexes and ethnicities.1 If on one hand the practice of moderate exercise is considered a healthy activity that favors the cardiovascular system, on the other, high-intensity exercise for a long period can increase the risk for sudden death (SD).2 Even considering the huge number of individuals exercising daily, SD in that context is rare. However, the prevention of SD can be difficult and it has significant repercussion, mainly among young practitioners of leisure exercise or athletes. From the epidemiological viewpoint, cardiac SD affects 200,000 to 400,000 individuals in the United States of America (USA) annually.3 In the sports scenario, around 200 athletes per year are estimated to have a fatal event.4 In Spain, the national registry of SD in athletes reported 180 cases from 1995 to 2007, suggesting an incidence of 15 to 20 cases per year.5 For athletes, preparticipation evaluation (PPE) is indicated, and can be effective in preventing cardiac SD in that context.6 However, that type of screening has great variability between different countries and entities that perform it. In the sports context, genetic evaluation is performed only in specific cases. This review describes basic aspects of genetic evaluation, as well as the indications for molecular analysis and their correct clinical interpretation, for practitioners of recreational exercise, amateur sportsmen and high-performance athletes

    Identification, clinical manifestation and structural mechanisms of mutations in AMPK associated cardiac glycogen storage disease

    Get PDF
    BACKGROUND: Although 21 causative mutations have been associated with PRKAG2 syndrome, our understanding of the syndrome remains incomplete. The aim of this project is to further investigate its unique genetic background, clinical manifestations, and underlying structural changes. METHODS: We recruited 885 hypertrophic cardiomyopathy (HCM) probands and their families internationally. Targeted next-generation sequencing of sudden cardiac death (SCD) genes was performed. The role of the identified variants was assessed using histological techniques and computational modeling. FINDINGS: Twelve PRKAG2 syndrome kindreds harboring 5 distinct variants were identified. The clinical penetrance of 25 carriers was 100.0%. Twenty-two family members died of SCD or heart failure (HF). All probands developed bradycardia (HRmin, 36.3+/-9.8bpm) and cardiac conduction defects, and 33% had evidence of atrial fibrillation/paroxysmal supraventricular tachycardia (PSVT) and 67% had ventricular preexcitation, respectively. Some carriers presented with apical hypertrophy, hypertension, hyperlipidemia, and renal insufficiency. Histological study revealed reduced AMPK activity and major cardiac channels in the heart tissue with K485E mutation. Computational modelling suggests that K485E disrupts the salt bridge connecting the beta and gamma subunits of AMPK, R302Q/P decreases the binding affinity for ATP, T400N and H401D alter the orientation of H383 and R531 residues, thus altering nucleotide binding, and N488I and L341S lead to structural instability in the Bateman domain, which disrupts the intramolecular regulation. INTERPRETATION: Including 4 families with 3 new mutations, we describe a cohort of 12 kindreds with PRKAG2 syndrome with novel pathogenic mechanisms by computational modelling. Severe clinical cardiac phenotypes may be developed, including HF, requiring close follow-up

    Detección automática de momentos de risco alérxico da poboación ourensá

    Get PDF
    Na actualidade, o número de persoas que presentan reaccións alérxicas ao pole aumentou considerablemente, polo que é interesante contar con mecanismos que permitan determinar, coa maior precisión posible, a cantidade de pole que estará presente na atmosfera e reducir, deste xeito, o seu impacto na poboación. Para predicir a concentración de pole realizáronse estudos que utilizan modelos de regresión lineal e que, posteriormente, evolucionaron cara a modelos automáticos ou de aprendizaxe profunda. A pesar da aplicación idónea destes modelos para predicir a concentración de pole, os resultados obtidos dependen en gran medida da existencia de medicións previas de concentración e están influenciados pola calidade dos datos dispoñibles. A investigación conxunta das disciplinas de botánica e de informática trata de realizar unha estimación do risco de alerxias polo pole, de forma que permita a administración de antihistamínicos con anterioridade á súa exposición, posto que está demostrado que é moito máis efectiva ca unha vez aparecidos os primeiros síntomas. En concreto, esta estimación fíxose sobre Alnus, Betula, Platanus, Poaceae e Urticaceae, os cinco tipos de pole considerados máis agresivos na provincia de Ourense. O grupo de investigación da disciplina de botánica encargouse da captación de datos de concentración de pole, normalización e representación dos valores de recollida, calculou a estación polínica principal para cada tipo de pole e propuxo un calendario polínico para a cidade de Ourense. E o grupo de investigación de Informática centrouse na análise dos datos proporcionados e na comparación de diferentes técnicas de aprendizaxe automática para clasificar as concentracións de pole na atmosfera da provincia de Ourense e para facilitar a toma de decisións. Neste traballo móstrase a experimentación unicamente co tipo de pole Alnus; é de esperar que tamén será adecuada para cada un dos outros tipos de pole, adaptando en cada caso o modelo máis axeitado

    Human Hereditary Cardiomyopathy Shares a Genetic Substrate With Bicuspid Aortic Valve.

    Get PDF
    The complex genetics underlying human cardiac disease is evidenced by its heterogenous manifestation, multigenic basis, and sporadic occurrence. These features have hampered disease modeling and mechanistic understanding. Here, we show that 2 structural cardiac diseases, left ventricular noncompaction (LVNC) and bicuspid aortic valve, can be caused by a set of inherited heterozygous gene mutations affecting the NOTCH ligand regulator MIB1 (MINDBOMB1) and cosegregating genes. We used CRISPR-Cas9 gene editing to generate mice harboring a nonsense or a missense MIB1 mutation that are both found in LVNC families. We also generated mice separately carrying these MIB1 mutations plus 5 additional cosegregating variants in the ASXL3, APCDD1, TMX3, CEP192, and BCL7A genes identified in these LVNC families by whole exome sequencing. Histological, developmental, and functional analyses of these mouse models were carried out by echocardiography and cardiac magnetic resonance imaging, together with gene expression profiling by RNA sequencing of both selected engineered mouse models and human induced pluripotent stem cell-derived cardiomyocytes. Potential biochemical interactions were assayed in vitro by coimmunoprecipitation and Western blot. Mice homozygous for the MIB1 nonsense mutation did not survive, and the mutation caused LVNC only in heteroallelic combination with a conditional allele inactivated in the myocardium. The heterozygous MIB1 missense allele leads to bicuspid aortic valve in a NOTCH-sensitized genetic background. These data suggest that development of LVNC is influenced by genetic modifiers present in affected families, whereas valve defects are highly sensitive to NOTCH haploinsufficiency. Whole exome sequencing of LVNC families revealed single-nucleotide gene variants of ASXL3, APCDD1, TMX3, CEP192, and BCL7A cosegregating with the MIB1 mutations and LVNC. In experiments with mice harboring the orthologous variants on the corresponding Mib1 backgrounds, triple heterozygous Mib1 Apcdd1 Asxl3 mice showed LVNC, whereas quadruple heterozygous Mib1 Cep192 Tmx3;Bcl7a mice developed bicuspid aortic valve and other valve-associated defects. Biochemical analysis suggested interactions between CEP192, BCL7A, and NOTCH. Gene expression profiling of mutant mouse hearts and human induced pluripotent stem cell-derived cardiomyocytes revealed increased cardiomyocyte proliferation and defective morphological and metabolic maturation. These findings reveal a shared genetic substrate underlying LVNC and bicuspid aortic valve in which MIB1-NOTCH variants plays a crucial role in heterozygous combination with cosegregating genetic modifiers.This study was supported by grants PID2019-104776RB-I00 and PID2020-120326RB-I00, CB16/11/00399 (CIBER CV) financed by MCIN/AEI/10.13039/501100011033, a grant from the Fundación BBVA (Ref. BIO14_298), and a grant from Fundació La Marató de TV3 (Ref. 20153431) to J.L.d.l.P. M.S.-A. was supported by a PhD contract from the Severo Ochoa Predoctor-al Program (SVP-2014-068723) of the MCIN/AEI/10.13039/501100011033. J.R.G.-B. was supported by SEC/FEC-INV-BAS 21/021. A.R. was funded by grants from MCIN (PID2021123925OB-I00), TerCel (RD16/0011/0024), AGAUR (2017-SGR-899), and Fundació La Marató de TV3 (201534-30). J.M.P.-P. was supported by RTI2018-095410-B-I00 (MCIN) and PY2000443 (Junta de Andalucía). B.I. was supported by the European Commission (H2020-HEALTH grant No. 945118) and by MCIN (PID2019-107332RB-I00). DO’R was sup-ported by the Medical Research Council (MC-A658-5QEB0) and KAMcG by the British Heart Foundation (RG/19/6/34387, RE/18/4/34215). The cost of this publication was supported in part with funds from the European Regional Devel-opment Fund. The Centro Nacional de Investigaciones Cardiovasculares is sup-ported by the ISCIII, the MCIN, and the Pro Centro Nacional de Investigaciones Cardiovasculares Foundation and is a Severo Ochoa Center of Excellence (grant CEX2020001041-S) financed by MCIN/AEI/10.13039/501100011033. For the purpose of open access, the authors have applied a CC BY public copyright license to any Author Accepted Manuscript version arising.S

    Truncating FLNC Mutations Are Associated With High-Risk Dilated and Arrhythmogenic Cardiomyopathies

    Get PDF
    BACKGROUND: Filamin C (encoded by the FLNC gene) is essential for sarcomere attachment to the plasmatic membrane. FLNC mutations have been associated with myofibrillar myopathies, and cardiac involvement has been reported in some carriers. Accordingly, since 2012, the authors have included FLNC in the genetic screening of patients with inherited cardiomyopathies and sudden death. OBJECTIVES: The aim of this study was to demonstrate the association between truncating mutations in FLNC and the development of high-risk dilated and arrhythmogenic cardiomyopathies. METHODS: FLNC was studied using next-generation sequencing in 2,877 patients with inherited cardiovascular diseases. A characteristic phenotype was identified in probands with truncating mutations in FLNC. Clinical and genetic evaluation of 28 affected families was performed. Localization of filamin C in cardiac tissue was analyzed in patients with truncating FLNC mutations using immunohistochemistry. RESULTS: Twenty-three truncating mutations were identified in 28 probands previously diagnosed with dilated, arrhythmogenic, or restrictive cardiomyopathies. Truncating FLNC mutations were absent in patients with other phenotypes, including 1,078 patients with hypertrophic cardiomyopathy. Fifty-four mutation carriers were identified among 121 screened relatives. The phenotype consisted of left ventricular dilation (68%), systolic dysfunction (46%), and myocardial fibrosis (67%); inferolateral negative T waves and low QRS voltages on electrocardiography (33%); ventricular arrhythmias (82%); and frequent sudden cardiac death (40 cases in 21 of 28 families). Clinical skeletal myopathy was not observed. Penetrance was >97% in carriers older than 40 years. Truncating mutations in FLNC cosegregated with this phenotype with a dominant inheritance pattern (combined logarithm of the odds score: 9.5). Immunohistochemical staining of myocardial tissue showed no abnormal filamin C aggregates in patients with truncating FLNC mutations. CONCLUSIONS: Truncating mutations in FLNC caused an overlapping phenotype of dilated and left-dominant arrhythmogenic cardiomyopathies complicated by frequent premature sudden death. Prompt implantation of a cardiac defibrillator should be considered in affected patients harboring truncating mutations in FLNC.Instituto de Salud Carlos III [PI11/0699, PI14/0967, PI14/01477, RD012/0042/0029, RD012/0042/0049, RD012/0042/0066, RD12/0042/0069]; Spanish Ministry of Economy and Competitiveness [SAF2015-71863-REDT]; Plan Nacional de I+D+I; Plan Estatalde I+D+I, European Regional Development Fund; Health in Code SLS

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362
    corecore