26 research outputs found

    Transient response of the global mean warming rate and its spatial variation

    Get PDF
    The Earth has warmed over the past century. The warming rate (amount of warming over a given period) varies in time and space. Observations show a recent increase in global mean warming rate, which is initially maintained in model projections, but which diverges substantially in future depending on the emissions scenario followed. Scenarios that stabilize forcing lead to much lower warming rates, as the rate depends on the change in forcing, not the amount. Warming rates vary spatially across the planet, but most areas show a shift toward higher warming rates in recent decades. The areal distribution of warming rates is also changing shape to include a longer tail in recent decades. Some areas of the planet are already experiencing extreme warming rates of about 1 °C/decade. The fat tail in areal distribution of warming rates is pronounced in model runs when the forcing and global mean warming rate is increasing, and indicates a climate state more prone to regime transitions. The area-proportion of the Earth displaying warming/cooling trends is shown to be directly related to the global mean warming rate, especially for trends of length 15 years and longer. Since the global mean warming rate depends on the forcing rate, the proportion of warming/cooling trend areas in future also depends critically on the choice of future forcing scenario. Keywords: Climate variability, Climate projection, Transient response, Extreme warmin

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Global Oceans

    Get PDF
    Global Oceans is one chapter from the State of the Climate in 2019 annual report and is avail-able from https://doi.org/10.1175/BAMS-D-20-0105.1. Compiled by NOAA’s National Centers for Environmental Information, State of the Climate in 2019 is based on contr1ibutions from scien-tists from around the world. It provides a detailed update on global climate indicators, notable weather events, and other data collected by environmental monitoring stations and instru-ments located on land, water, ice, and in space. The full report is available from https://doi.org /10.1175/2020BAMSStateoftheClimate.1

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    On the stability and spatiotemporal variance distribution of salinity in the upper ocean

    No full text
    Despite recent advances in ocean observing arrays and satellite sensors, there remains great uncertainty in the large-scale spatial variations of upper ocean salinity on the interannual to decadal timescales. Consonant with both broad-scale surface warming and the amplification of the global hydrological cycle, observed global multidecadal salinity changes typically have focussed on the linear response to anthropogenic forcing but not on salinity variations due to changes in the static stability and or variability due to the intrinsic ocean or internal climate processes. Here, we examine the static stability and spatiotemporal variability of upper ocean salinity across a hierarchy of models and reanalyses. In particular, we partition the variance into time bands via application of singular spectral analysis, considering sea surface salinity (SSS), the Brunt Väisälä frequency (N2), and the ocean salinity stratification in terms of the stabilizing effect due to the haline part of N2 over the upper 500m. We identify regions of significant coherent SSS variability, either intrinsic to the ocean or in response to the interannually varying atmosphere. Based on consistency across models (CMIP5 and forced experiments) and reanalyses, we identify the stabilizing role of salinity in the tropics—typically associated with heavy precipitation and barrier layer formation, and the role of salinity in destabilizing upper ocean stratification in the subtropical regions where large-scale density compensation typically occurs

    Betting strategies on fluctuations in the transient response of greenhouse warming

    No full text
    We examine a series of betting strategies on the transient response of greenhouse warming, expressed by changes in 15-year mean global surface temperature from one 15-year period to the next. Over the last century, these bets are increasingly dominated by positive changes (warming), reflecting increasing greenhouse forcing and its rising contribution to temperature changes on this time scale. The greenhouse contribution to 15-year trends is now of a similar magnitude to typical naturally occurring 15-year trends. Negative 15-year changes (decreases) have not occurred since about 1970, and are still possible, but now rely on large, and therefore infrequent, natural variations. Model projections for even intermediate warming scenarios show very low likelihoods of obtaining negative 15-year changes over the coming century. Betting against greenhouse warming, even on these short time scales, is no longer a rational proposition.</jats:p

    A large ensemble illustration of how record-shattering heat records can endure

    No full text
    The record-shattering hot day in the Pacific Northwest in June 2021 is used to motivate a study of record-shattering temperature extremes in a very large hindcast ensemble. The hottest days in the Pacific Northwest in the large ensemble have similar large scale and synoptic patterns to those associated with the observed event. From the perspective of a fixed location, the hottest ensemble days are acutely sensitive to the chance sequencing of a dry period with a precisely positioned weather pattern. These days are thus rare and require very large samples (tens of thousands of years) to capture. The enduring nature of record-shattering heat records can be understood through this lens of weather ‘noise’ and sampling. When a record-shattering event occurs due to chance alignment of weather systems in the optimal configuration, any small sample of years subsequent to the (very unlikely) record event has an extremely low chance of finding yet another chance extreme. While warming of the baseline climate can narrow the gap between more regular extremes and record-shattering extremes, this can take many decades depending on the pace of climate change. Climate models are unlikely to capture record-shattering extremes at fixed locations given by observations unless the model samples are large enough to provide enough weather outcomes to include the optimal weather alignments. This underscores the need to account for sampling in assessing models and changes in weather-sensitive extremes. In particular, climate models are not necessarily deficient in representing extremes if that assessment is based on their absence in undersize samples

    Changes in the metastability of the midlatitude Southern Hemisphere circulation and the utility of nonstationary cluster analysis and split-flow blocking indices as diagnostic tools

    Get PDF
    Changes in the metastability of the Southern Hemisphere 500-hPa circulation are examined using both cluster analysis techniques and split-flow blocking indices. The cluster methodology is a purely data-driven approach for parameterization whereby a multiscale approximation to nonstationary dynamical processes is achieved through optimal sequences of locally stationary fast vector autoregressive factor (VARX) processes and some slow (or persistent) hidden process switching between them. Comparison is made with blocking indices commonly used in weather forecasting and climate analysis to identify dynamically relevant metastable regimes in the 500-hPa circulation in both reanalysis and Atmospheric Model Intercomparison Project (AMIP) datasets. The analysis characterizes the metastable regime in both reanalysis and model datasets prior to 1978 as positive and negative phases of a hemispheric midlatitude blocking state with the southern annular mode (SAM) associated with a transition state. Post-1978, the SAM emerges as a true metastable state replacing the negative phase of the hemispheric blocking pattern. The hidden state frequency of occurrences exhibits strong trends. The blocking pattern dominates in the early 1980s, and then gradually decreases. There is a corresponding increase in the SAM frequency of occurrence. This trend is largely evident in the reanalysis summer and spring but was not evident in the AMIP dataset. Further comparison with the split-flow blocking indices reveals a superficial correspondence between the cluster hidden state frequency of occurrences and split-flow indices. Examination of composite states shows that the blocking indices capture splitting of the zonal flow whereas the cluster composites reflect coherent block formation. Differences in blocking climatologies from the respective methods are discussed

    Common Issues in Verification of Climate Forecasts and Projections

    No full text
    With increased interest in climate forecasts and projections, it is important to understand more about their sources and levels of skill. A starting point here is to describe the nature of the skill associated with forecasts and projections. Climate forecasts and projections typically both include time varying forcing of the climate, but only forecasts have initial conditions set close to the observed climate state. Climate forecasts therefore derive skill from both initial conditions and from forcing. The character of the initial condition skill and forcing skill is different. Skill from initial conditions results in a narrowing of expectations relative to a climatological distribution and points toward a more favoured part of the distribution. Forcing skill could result from a shift in the preferred parts of the climatological distribution in response to forcing, or it could result from a shift in the entire distribution, or both. Assessments of forcing skill require time averages of the target variable that are long enough so that the contributions from internal variations are small compared to the forced response. The assessment of skill of climate forecasts and projections is inherently partial because of the small number of repeated trials possible on typical climate time scales but is nonetheless the only direct measure of their performance
    corecore