46 research outputs found

    Two New Mutations in the CEL Gene Causing Diabetes and Hereditary Pancreatitis : How to Correctly Identify MODY8 Cases

    Get PDF
    Context Maturity onset diabetes of the young, type 8 (MODY8) is associated with mutations in the CEL gene, which encodes the digestive enzyme carboxyl ester lipase. Several diabetes cases and families have in recent years been attributed to mutations in CEL without any functional or clinical evidence provided. Objective To facilitate correct MODY8 diagnostics, we screened 2 cohorts of diabetes patients and delineated the phenotype. Methods Young, lean Swedish and Finnish patients with a diagnosis of type 2 diabetes (352 cases, 406 controls) were screened for mutations in the CEL gene. We also screened 58 Czech MODY cases who had tested negative for common MODY genes. For CEL mutation-positive subjects, family history was recorded, and clinical investigations and pancreatic imaging performed. Results Two cases (1 Swedish and 1 Czech) with germline mutation in CEL were identified. Clinical and radiological investigations of these 2 probands and their families revealed dominantly inherited insulin-dependent diabetes, pancreatic exocrine dysfunction, and atrophic pancreas with lipomatosis and cysts. Notably, hereditary pancreatitis was the predominant phenotype in 1 pedigree. Both families carried single-base pair deletions in the proximal part of the CEL variable number of tandem repeat (VNTR) region in exon 11. The mutations are predicted to lead to aberrant protein tails that make the CEL protein susceptible to aggregation. Conclusion The diagnosis of MODY8 requires a pancreatic exocrine phenotype and a deletion in the CEL VNTR in addition to dominantly inherited diabetes. CEL screening may be warranted also in families with hereditary pancreatitis of unknown genetic etiology.Peer reviewe

    Functional Characterization of MODY2 Mutations Highlights the Importance of the Fine-Tuning of Glucokinase and Its Role in Glucose Sensing

    Get PDF
    Glucokinase (GK) acts as a glucose sensor in the pancreatic beta-cell and regulates insulin secretion. Heterozygous mutations in the human GK-encoding GCK gene that reduce the activity index increase the glucose-stimulated insulin secretion threshold and cause familial, mild fasting hyperglycaemia, also known as Maturity Onset Diabetes of the Young type 2 (MODY2). Here we describe the biochemical characterization of five missense GK mutations: p.Ile130Thr, p.Asp205His, p.Gly223Ser, p.His416Arg and p.Ala449Thr. The enzymatic analysis of the corresponding bacterially expressed GST-GK mutant proteins show that all of them impair the kinetic characteristics of the enzyme. In keeping with their position within the protein, mutations p.Ile130Thr, p.Asp205His, p.Gly223Ser, and p.His416Arg strongly decrease the activity index of GK, affecting to one or more kinetic parameters. In contrast, the p.Ala449Thr mutation, which is located in the allosteric activator site, does not affect significantly the activity index of GK, but dramatically modifies the main kinetic parameters responsible for the function of this enzyme as a glucose sensor. The reduced Kcat of the mutant (3.21±0.28 s−1 vs 47.86±2.78 s−1) is balanced by an increased glucose affinity (S0.5 = 1.33±0.08 mM vs 7.86±0.09 mM) and loss of cooperativity for this substrate. We further studied the mechanism by which this mutation impaired GK kinetics by measuring the differential effects of several competitive inhibitors and one allosteric activator on the mutant protein. Our results suggest that this mutation alters the equilibrium between the conformational states of glucokinase and highlights the importance of the fine-tuning of GK and its role in glucose sensing

    Exome Sequencing and Genetic Testing for MODY

    Get PDF
    Context: Genetic testing for monogenic diabetes is important for patient care. Given the extensive genetic and clinical heterogeneity of diabetes, exome sequencing might provide additional diagnostic potential when standard Sanger sequencing-based diagnostics is inconclusive. Objective: The aim of the study was to examine the performance of exome sequencing for a molecular diagnosis of MODY in patients who have undergone conventional diagnostic sequencing of candidate genes with negative results. Research Design and Methods: We performed exome enrichment followed by high-throughput sequencing in nine patients with suspected MODY. They were Sanger sequencing-negative for mutations in the HNF1A, HNF4A, GCK, HNF1B and INS genes. We excluded common, non-coding and synonymous gene variants, and performed in-depth analysis on filtered sequence variants in a pre-defined set of 111 genes implicated in glucose metabolism. Results: On average, we obtained 45 X median coverage of the entire targeted exome and found 199 rare coding variants per individual. We identified 0–4 rare non-synonymous and nonsense variants per individual in our a priori list of 111 candidate genes. Three of the variants were considered pathogenic (in ABCC8, HNF4A and PPARG, respectively), thus exome sequencing led to a genetic diagnosis in at least three of the nine patients. Approximately 91% of known heterozygous SNPs in the target exomes were detected, but we also found low coverage in some key diabetes genes using our current exome sequencing approach. Novel variants in the genes ARAP1, GLIS3, MADD, NOTCH2 and WFS1 need further investigation to reveal their possible role in diabetes. Conclusion: Our results demonstrate that exome sequencing can improve molecular diagnostics of MODY when used as a complement to Sanger sequencing. However, improvements will be needed, especially concerning coverage, before the full potential of exome sequencing can be realized

    Genotype-stratified treatment for monogenic insulin resistance: a systematic review

    Get PDF

    Precision gestational diabetes treatment: a systematic review and meta-analyses

    Get PDF

    The Impact of the West Africa Ebola Outbreak on Obstetric Health Care in Sierra Leone.

    No full text
    BACKGROUND: As Sierra Leone celebrates the end of the Ebola Virus Disease (EVD) outbreak, we can begin to fully grasp its impact on already weak health systems. The EVD outbreak in West Africa forced many hospitals to close down or reduce their activity, either to prevent nosocomial transmission or because of staff shortages. The aim of this study is to assess the potential impact of EVD on nationwide access to obstetric care in Sierra Leone. METHODS AND FINDINGS: Community health officers collected weekly data between January 2014-May 2015 on in-hospital deliveries and caesarean sections (C-sections) from all open facilities (public, private for-profit and private non-profit sectors) offering emergency obstetrics in Sierra Leone. This was compared to official data of EVD cases per district. Logistic and Poisson regression analyses were used to compute risk and rate estimates. Nationwide, the number of in-hospital deliveries and C-sections decreased by over 20% during the EVD outbreak. The decline occurred early on in the EVD outbreak and was mainly attributable to the closing of private not-for-profit hospitals rather than government facilities. Due to difficulties in collecting data in the midst of an epidemic, limitations of this study include some missing data points. CONCLUSIONS: Both the number of in-hospital deliveries and C-sections substantially declined shortly after the onset of the EVD outbreak. Since access to emergency obstetric care, like C-sections, is associated with decreased maternal mortality, many women are likely to have died due to the reduced access to appropriate care during childbirth. Future research on indirect health effects of health system breakdown should ideally be nationwide and continue also into the recovery phase. It is also important to understand the mechanisms behind the deterioration so that important health services can be reestablished

    Structural and biophysical characterization of transcription factor HNF-1A as a tool to study MODY3 diabetes variants

    Get PDF
    Abstract Hepatocyte nuclear factor 1A (HNF-1A) is a transcription factor expressed in several embryonic and adult tissues, modulating the expression of numerous target genes. Pathogenic variants in the HNF1A gene are known to cause maturity-onset diabetes of the young 3 (MODY3 or HNF1A MODY), a disease characterized by dominant inheritance, age of onset before 25 to 35 years of age, and pancreatic β-cell dysfunction. A precise diagnosis can alter management of this disease, as insulin can be exchanged with sulfonylurea tablets and genetic counseling differs from polygenic forms of diabetes. Therefore, more knowledge on the mechanisms of HNF-1A function and the level of pathogenicity of the numerous HNF1A variants is required for precise diagnostics. Here, we structurally and biophysically characterized an HNF-1A protein containing both the DNA-binding domain and the dimerization domain, and determined the folding and DNA-binding capacity of two established MODY3 HNF-1A variant proteins (P112L, R263C) and one variant of unknown significance (N266S). All three variants showed reduced functionality compared to the WT protein. Furthermore, while the R263C and N266S variants displayed reduced binding to an HNF-1A target promoter, we found the P112L variant was unstable in vitro and in cells. Our results support and mechanistically explain disease causality for these investigated variants and present a novel approach for the dissection of structurally unstable and DNA-binding defective variants. This study indicates that structural and biochemical investigation of HNF-1A is a valuable tool in reliable variant classification needed for precision diabetes diagnostics and management

    Functional characterization of HNF4A gene variants identify promoter and cell line specific transactivation effects

    Get PDF
    Hepatocyte nuclear factor-4 alpha (HNF-4A) regulates genes with roles in glucose metabolism and ß-cell development. Although pathogenic HNF4A variants are commonly associated with maturity-onset diabetes of the young (MODY1; HNF4A-MODY), rare phenotypes also include hyperinsulinemic hypoglycemia, renal Fanconi syndrome and liver disease. While the association of rare functionally damaging HNF1A variants with HNF1A-MODY and type 2 diabetes is well established owing to robust functional assays, the impact of HNF4A variants on HNF-4A transactivation in tissues including the liver and kidney is less known, due to lack of similar assays. Our aim was to investigate the functional effects of seven HNF4A variants, located in the HNF-4A DNA binding domain and associated with different clinical phenotypes, by various functional assays and cell lines (transactivation, DNA binding, protein expression, nuclear localization) and in silico protein structure analyses. Variants R85W, S87N and R89W demonstrated reduced DNA binding to the consensus HNF-4A binding elements in the HNF1A promoter (35, 13 and 9%, respectively) and the G6PC promoter (R85W ~10%). While reduced transactivation on the G6PC promoter in HepG2 cells was shown for S87N (33%), R89W (65%) and R136W (35%), increased transactivation by R85W and R85Q was confirmed using several combinations of target promoters and cell lines. R89W showed reduced nuclear levels. In silico analyses supported variant induced structural impact. Our study indicates that cell line specific functional investigations are important to better understand HNF4A-MODY genotype-phenotype correlations, as our data supports ACMG/AMP interpretations of loss-of-function variants and propose assay-specific HNF4A control variants for future functional investigations.Published version, accepted version (12 month embargo), submitted versionThis article is freely available online. Click on the 'Additional Link' above to access the full-text via the publisher's site

    Permanent neonatal diabetes due to mutations in KCNJ11 encoding Kir6.2: patient characteristics and initial response to sulfonylurea therapy.

    No full text
    Permanent neonatal diabetes (PND) can be caused by mutations in the transcription factors insulin promoter factor (IPF)-1, eukaryotic translation initiation factor-2alpha kinase 3 (EIF2AK3), and forkhead box-P3 and in key components of insulin secretion: glucokinase (GCK) and the ATP-sensitive K(+) channel subunit Kir6.2. We sequenced the gene encoding Kir6.2 (KCNJ11) in 11 probands with GCK-negative PND. Heterozygous mutations were identified in seven probands, causing three novel (F35V, Y330C, and F333I) and two known (V59M and R201H) Kir6.2 amino acid substitutions. Only two probands had a family history of diabetes. Subjects with the V59M mutation had neurological features including motor delay. Three mutation carriers tested had an insulin secretory response to tolbutamide, but not to glucose or glucagon. Glibenclamide was introduced in increasing doses to investigate whether sulfonylurea could replace insulin. At a glibenclamide dose of 0.3-0.4 mg. kg(-1). day(-1), insulin was discontinued. Blood glucose did not deteriorate, and HbA(1c) was stable or fell during 2-6 months of follow-up. An oral glucose tolerance test performed in one subject revealed that glucose-stimulated insulin release was restored. Mutations in Kir6.2 were the most frequent cause of PND in our cohort. Apparently insulin-dependent patients with mutations in Kir6.2 may be managed on an oral sulfonylurea with sustained metabolic control rather than insulin injections, illustrating the principle of pharmacogenetics applied in diabetes treatment
    corecore