60 research outputs found

    Top-down inputs enhance orientation selectivity in neurons of the primary visual cortex during perceptual learning.

    Get PDF
    Perceptual learning has been used to probe the mechanisms of cortical plasticity in the adult brain. Feedback projections are ubiquitous in the cortex, but little is known about their role in cortical plasticity. Here we explore the hypothesis that learning visual orientation discrimination involves learning-dependent plasticity of top-down feedback inputs from higher cortical areas, serving a different function from plasticity due to changes in recurrent connections within a cortical area. In a Hodgkin-Huxley-based spiking neural network model of visual cortex, we show that modulation of feedback inputs to V1 from higher cortical areas results in shunting inhibition in V1 neurons, which changes the response properties of V1 neurons. The orientation selectivity of V1 neurons is enhanced without changing orientation preference, preserving the topographic organizations in V1. These results provide new insights to the mechanisms of plasticity in the adult brain, reconciling apparently inconsistent experiments and providing a new hypothesis for a functional role of the feedback connections

    Homeostatic Plasticity Studied Using In Vivo Hippocampal Activity-Blockade: Synaptic Scaling, Intrinsic Plasticity and Age-Dependence

    Get PDF
    Homeostatic plasticity is thought to be important in preventing neuronal circuits from becoming hyper- or hypoactive. However, there is little information concerning homeostatic mechanisms following in vivo manipulations of activity levels. We investigated synaptic scaling and intrinsic plasticity in CA1 pyramidal cells following 2 days of activity-blockade in vivo in adult (postnatal day 30; P30) and juvenile (P15) rats. Chronic activity-blockade in vivo was achieved using the sustained release of the sodium channel blocker tetrodotoxin (TTX) from the plastic polymer Elvax 40W implanted directly above the hippocampus, followed by electrophysiological assessment in slices in vitro. Three sets of results were in general agreement with previous studies on homeostatic responses to in vitro manipulations of activity. First, Schaffer collateral stimulation-evoked field responses were enhanced after 2 days of in vivo TTX application. Second, miniature excitatory postsynaptic current (mEPSC) amplitudes were potentiated. However, the increase in mEPSC amplitudes occurred only in juveniles, and not in adults, indicating age-dependent effects. Third, intrinsic neuronal excitability increased. In contrast, three sets of results sharply differed from previous reports on homeostatic responses to in vitro manipulations of activity. First, miniature inhibitory postsynaptic current (mIPSC) amplitudes were invariably enhanced. Second, multiplicative scaling of mEPSC and mIPSC amplitudes was absent. Third, the frequencies of adult and juvenile mEPSCs and adult mIPSCs were increased, indicating presynaptic alterations. These results provide new insights into in vivo homeostatic plasticity mechanisms with relevance to memory storage, activity-dependent development and neurological diseases

    Fast Coding of Orientation in Primary Visual Cortex

    Get PDF
    Understanding how populations of neurons encode sensory information is a major goal of systems neuroscience. Attempts to answer this question have focused on responses measured over several hundred milliseconds, a duration much longer than that frequently used by animals to make decisions about the environment. How reliably sensory information is encoded on briefer time scales, and how best to extract this information, is unknown. Although it has been proposed that neuronal response latency provides a major cue for fast decisions in the visual system, this hypothesis has not been tested systematically and in a quantitative manner. Here we use a simple β€˜race to threshold’ readout mechanism to quantify the information content of spike time latency of primary visual (V1) cortical cells to stimulus orientation. We find that many V1 cells show pronounced tuning of their spike latency to stimulus orientation and that almost as much information can be extracted from spike latencies as from firing rates measured over much longer durations. To extract this information, stimulus onset must be estimated accurately. We show that the responses of cells with weak tuning of spike latency can provide a reliable onset detector. We find that spike latency information can be pooled from a large neuronal population, provided that the decision threshold is scaled linearly with the population size, yielding a processing time of the order of a few tens of milliseconds. Our results provide a novel mechanism for extracting information from neuronal populations over the very brief time scales in which behavioral judgments must sometimes be made

    Brain oscillations and connectivity in autism spectrum disorders (ASD):new approaches to methodology, measurement and modelling

    Get PDF
    Although atypical social behaviour remains a key characterisation of ASD, the presence ofsensory and perceptual abnormalities has been given a more central role in recentclassification changes. An understanding of the origins of such aberrations could thus prove afruitful focus for ASD research. Early neurocognitive models of ASD suggested that thestudy of high frequency activity in the brain as a measure of cortical connectivity mightprovide the key to understanding the neural correlates of sensory and perceptual deviations inASD. As our review shows, the findings from subsequent research have been inconsistent,with a lack of agreement about the nature of any high frequency disturbances in ASD brains.Based on the application of new techniques using more sophisticated measures of brainsynchronisation, direction of information flow, and invoking the coupling between high andlow frequency bands, we propose a framework which could reconcile apparently conflictingfindings in this area and would be consistent both with emerging neurocognitive models ofautism and with the heterogeneity of the condition

    Charge relaxation in polyampholytes of various statistics

    No full text
    We discuss theoretically the relaxation of charge fluctuations in polyampholyte solutions. It has been shown previously by some of us (J. Wittmer et al. , Europhys. Lett. 24, 263 (1993)) that the charge distribution along the polyampholyte backbone has a dramatic influence on the polarization energy and hence on the solubility. Here it is demonstrated that a similar effect exists for the charge relaxation. The charge relaxation mechanism qualitatively depends on the statistics: for alternating polyampholytes the relaxation is mainly due to local dipole inversion and is not primarily driven by electrostatic interactions, whereas for random polyampholytes it is driven by electrostatic interactions. Intermediate statistics (with short-ranged (exponential) correlations) appear as a combination of these two limiting cases: short-wavelength modes are insensitive to the loss of correlations along the backbone, whereas long-wavelength modes correspond to a random statistics with renormalized charges. The relaxation of the dielectric constant is also calculated

    Feedback stabilizes propagation of synchronous spiking in cortical neural networks

    No full text
    Precisely timed action potentials related to stimuli and behavior have been observed in the cerebral cortex. However, information carried by the precise spike timing has to propagate through many cortical areas, and noise could disrupt millisecond precision during the transmission. Previous studies have demonstrated that only strong stimuli that evoke a large number of spikes with small dispersion of spike times can propagate through multilayer networks without degrading the temporal precision. Here we show that feedback projections can increase the number of spikes in spike volleys without degrading their temporal precision. Feedback also increased the range of spike volleys that can propagate through multilayer networks. Our work suggests that feedback projections could be responsible for the reliable propagation of information encoded in spike times through cortex, and thus could serve as an attentional mechanism to regulate the flow of information in the cortex. Feedback projections may also participate in generating spike synchronization that is engaged in cognitive behaviors by the same mechanisms described here for spike propagation

    Charge relaxation in polyampholytes of various statistics

    No full text
    • …
    corecore