10 research outputs found

    Haemodynamic and clinical effects of ularitide in decompensated heart failure

    Get PDF
    Aims Ularitide is a synthetic form of urodilatin, a natriuretic peptide produced in the kidney with vasodilating, natriuretic, and diuretic effects, that offers promise for the management of decompensated heart failure (DHF). We assessed the efficacy and safety of ularitide in treating patients with DHF. Methods and results In this Phase II randomized, double-blind, placebo-controlled trial, 221 DHF patients received either placebo (n=53) or ularitide at 7.5 ng/kg/min (n=60), 15 ng/kg/min (n=53), or 30 ng/kg/min (n=55) as a 24-h continuous infusion. At 6 h, ularitide demonstrated a significant decrease in pulmonary capillary wedge pressure (P=0.052, P=0.000004, P=0.000002, respectively) and improved dyspnoea score in the 7.5, 15, and 30 ng/kg/min ularitide group (P=0.0026, P=0.0026, P=0.0013, respectively). Ularitide reduced systemic vascular resistance and increased cardiac index for the 15 and 30 ng/kg/min groups (P=0.017, P=0.00002, respectively). Systolic blood pressure (BP) decreased dose dependency. Heart rate and serum creatinine were unchanged through day 3. Most frequently reported drug-related adverse events through day 3 in all ularitide groups were dose-dependent BP decrease and hypotension. Conclusion Ularitide lowered cardiac filling pressures and improved dyspnoea without apparent early deleterious effects on renal function in DHF patients. These results suggest that ularitide may play a role in the management of DHF

    Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers

    Get PDF
    Modern humans have populated Europe for more than 45,000 years1,2. Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period3. Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe4, but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants

    Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers

    Get PDF
    Modern humans have populated Europe for more than 45,000 years. Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period. Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe, but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants.Archaeological Heritage Managemen

    Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers

    Get PDF
    Modern humans have populated Europe for more than 45,000 years(1,2). Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period(3). Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe(4), but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants.Molecular Technology and Informatics for Personalised Medicine and Healt

    Author Correction: Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers (Nature, (2023), 615, 7950, (117-126), 10.1038/s41586-023-05726-0)

    No full text

    Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers

    No full text

    The genetic history of Ice Age Europe

    Get PDF
    International audienc

    The genetic history of Ice Age Europe

    No full text

    The genomic history of southeastern Europe

    Get PDF
    Farming was first introduced to Europe in the mid-seventh millennium bc, and was associated with migrants from Anatolia who settled in the southeast before spreading throughout Europe. Here, to understand the dynamics of this process, we analysed genome-wide ancient DNA data from 225 individuals who lived in southeastern Europe and surrounding regions between 12000 and 500 bc. We document a west-east cline of ancestry in indigenous hunter-gatherers and, in eastern Europe, the early stages in the formation of Bronze Age steppe ancestry. We show that the first farmers of northern and western Europe dispersed through southeastern Europe with limited hunter-gatherer admixture, but that some early groups in the southeast mixed extensively with hunter-gatherers without the sex-biased admixture that prevailed later in the north and west. We also show that southeastern Europe continued to be a nexus between east and west after the arrival of farmers, with intermittent genetic contact with steppe populations occurring up to 2,000 years earlier than the migrations from the steppe that ultimately replaced much of the population of northern Europe.Iain Mathieson 
 Wolfgang Haak 
 David Reic
    corecore