51 research outputs found

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Brachyury and Related Tbx Proteins Interact with the Mixl1 Homeodomain Protein and Negatively Regulate Mixl1 Transcriptional Activity

    Get PDF
    Mixl1 is a homeodomain transcription factor required for mesoderm and endoderm patterning during mammalian embryogenesis. Despite its crucial function in development, co-factors that modulate the activity of Mixl1 remain poorly defined. Here we report that Mixl1 interacts physically and functionally with the T-box protein Brachyury and related members of the T-box family of transcription factors. Transcriptional and protein analyses demonstrated overlapping expression of Mixl1 and Brachyury during embryonic stem cell differentiation. In vitro protein interaction studies showed that the Mixl1 with Brachyury associated via their DNA-binding domains and gel shift assays revealed that the Brachyury T-box domain bound to Mixl1-DNA complexes. Furthermore, luciferase reporter experiments indicated that association of Mixl1 with Brachyury and related T-box factors inhibited the transactivating potential of Mixl1 on the Gsc and PdgfrΞ± promoters. Our results indicate that the activity of Mixl1 can be modulated by protein-protein interactions and that T-box factors can function as negative regulators of Mixl1 activity

    The Genome of a Pathogenic Rhodococcus: Cooptive Virulence Underpinned by Key Gene Acquisitions

    Get PDF
    We report the genome of the facultative intracellular parasite Rhodococcus equi, the only animal pathogen within the biotechnologically important actinobacterial genus Rhodococcus. The 5.0-Mb R. equi 103S genome is significantly smaller than those of environmental rhodococci. This is due to genome expansion in nonpathogenic species, via a linear gain of paralogous genes and an accelerated genetic flux, rather than reductive evolution in R. equi. The 103S genome lacks the extensive catabolic and secondary metabolic complement of environmental rhodococci, and it displays unique adaptations for host colonization and competition in the short-chain fatty acid–rich intestine and manure of herbivoresβ€”two main R. equi reservoirs. Except for a few horizontally acquired (HGT) pathogenicity loci, including a cytoadhesive pilus determinant (rpl) and the virulence plasmid vap pathogenicity island (PAI) required for intramacrophage survival, most of the potential virulence-associated genes identified in R. equi are conserved in environmental rhodococci or have homologs in nonpathogenic Actinobacteria. This suggests a mechanism of virulence evolution based on the cooption of existing core actinobacterial traits, triggered by key host niche–adaptive HGT events. We tested this hypothesis by investigating R. equi virulence plasmid-chromosome crosstalk, by global transcription profiling and expression network analysis. Two chromosomal genes conserved in environmental rhodococci, encoding putative chorismate mutase and anthranilate synthase enzymes involved in aromatic amino acid biosynthesis, were strongly coregulated with vap PAI virulence genes and required for optimal proliferation in macrophages. The regulatory integration of chromosomal metabolic genes under the control of the HGT–acquired plasmid PAI is thus an important element in the cooptive virulence of R. equi

    The Presence of Maltreatment Fatality-Related Content in Pre-service Child Welfare Training Curricula: A Brief Report of 20 States

    No full text
    The purpose of this study was to assess the presence of evidence-based information about child maltreatment fatalities (CMFs) and risk factors for CMFs in pre-service child welfare training curricula in the United States. In this first paper to examine the extent to which child welfare workers receive content on CMFs in their pre-service child welfare training, we reviewed curricula from 20 states. We searched for content related to risk assessment and fatality characteristics in the following areas: child risk factors, parent risk factors, and family/household risk factors. Our results suggest that workers’ receive very little content regarding CMFs. We discuss the findings with regard to child welfare training and practice

    Hippocampus-based contextual memory alters the morphological characteristics of astrocytes in the dentate gyrus

    No full text
    Astrocytes have been reported to exist in two states, the resting and the reactive states. Morphological changes in the reactive state of astrocytes include an increase in thickness and number of processes, and an increase in the size of the cell body. Molecular changes also occur, such as an increase in the expression of glial fibrillary acidic protein (GFAP). However, the morphological and molecular changes during the process of learning and memory have not been elucidated. In the current study, we subjected Fvb/n mice to contextual fear conditioning, and checked for morphological and molecular changes in astrocytes. 1Β h after fear conditioning, type II and type III astrocytes exhibited a unique status with an increased number of processes and decreased GFAP expression which differed from the typical resting or reactive state. In addition, the protein level of excitatory excitatory amino acid transporter 2 (EAAT2) was increased 1Β h to 24Β h after contextual fear conditioning while EAAT1 did not show any alterations. Connexin 43 (Cx43) protein was found to be increased at 24Β h after fear conditioning. These data suggest that hippocampus-based contextual memory process induces changes in the status of astrocytes towards a novel status different from typical resting or reactive states. These morphological and molecular changes may be in line with functional changes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13041-016-0253-z) contains supplementary material, which is available to authorized users
    • …
    corecore