10 research outputs found

    Hereditary risk factors for the development of gastric cancer in younger patients

    Get PDF
    BACKGROUND: It is believed that the development of gastric cancer (GC) before the age of 50 has a hereditary basis. Blood group A and history of gastric cancer in first-degree relatives have been shown to be risk factors for GC. METHODS: In this case-control study, we enrolled patients with GC who were diagnosed before the age of 50. Patients who were diagnosed as having GC were selected. A total of 534 cases were found; of these, 44 diagnosed before the age of 50 were included in the case group. For the control group, 22 males and 22 females were randomly selected from the remaining subjects, who had diagnoses of GC after the age of 50. All the surviving patients and family members of the dead patients were interviewed about the history of cancer in the family and the age at which other family members developed cancer. The blood group of each subject was also obtained. RESULTS: forty-four cases under 50 years old (mean age: 36.2 years) and forty-four controls (mean age: 67.1 years) were enrolled in the study. At the time of the study, 59.1% of the study group and 50% of the control group were alive (P value = NS). In the study group, 68.1%, 13.6%, 13.6% and 4.5% had blood groups O, A, B and AB, respectively. In the control group the corresponding figures were 27.7%, 63.6%, 6.8% and 4.5%. First or second-degree relatives with cancer, including gastric (the most frequent), breast, lung, gynecological and hematological malignancies, were noted in 54.5% of the cases and 11.4% of the controls (p < 0.01). Family histories of cancer were accepted as valid provided that they were based on valid medical documents. CONCLUSIONS: It seems that the development of GC before the age of 50 is likely to be accompanied by familial susceptibility. Interestingly, our study showed a significant correlation between blood group O and the development of gastric cancer under the age of 50

    Non-destructive experimental testing and modeling of electrical impedance behavior of untreated and treated ultra-soft clayey soils

    No full text
    The characterization of ultra-soft clayey soil exhibits extreme challenges due to low shear strength of such material. Hence, inspecting the non-destructive electrical impedance behavior of untreated and treated ultra-soft clayey soils gains more attention. Both shear strength and electrical impedance were measured experimentally for both untreated and treated ultra-soft clayey soils. The shear strength of untreated ultra-soft clayey soil reached 0.17 kPa for 10% bentonite content, while the shear strengths increased to 0.27 kPa and 6.7 kPa for 10% bentonite content treated with 2% lime and 10% polymer, respectively. The electrical impedance of the ultra-soft clayey soil has shown a significant decrease from 1.6 kΩ to 0.607 kΩ when the bentonite content increased from 2% to 10% at a frequency of 300 kHz. The 10% lime and 10% polymer treatments have decreased the electrical impedances of ultra-soft clayey soil with 10% bentonite from 0.607 kΩ to 0.12 kΩ and 0.176 kΩ, respectively, at a frequency of 300 kHz. A new mathematical model has been accordingly proposed to model the non-destructive electrical impedance-frequency relationship for both untreated and treated ultra-soft clayey soils. The new model has shown a good agreement with experimental data with coefficient of determination (R2) up to 0.99 and root mean square error (RMSE) of 0.007 kΩ

    A kinematic measurement for ductile and brittle failure of materials using digital image correlation

    No full text
    This paper addresses some material level test which is done on quasi-brittle and ductile materials in the laboratory. The displacement control experimental program is composed of mortar cylinders under uniaxial compression shows quasi-brittle behavior and seemingly round-section aluminum specimens under uniaxial tension represents ductile behavior. Digital Image Correlation gives full field measurement of deformation in both aluminum and mortar specimens. Likewise, calculating the relative displacement of two points located on top and bottom of virtual LVDT, which is virtually placed on the surface of the specimen, gives us the classical measure of strain. However, the deformation distribution is not uniform all over the domain of specimens mainly due to imperfect nature of experiments and measurement devices. Displacement jumps in the fracture zone of mortar specimens and strain localization in the necking area for the aluminum specimen, which are reflecting different deformation values and deformation gradients, is compared to the other regions. Since the results are inherently scattered, it is usually non-trivial to smear out the stress of material as a function of a single strain value. To overcome this uncertainty, statistical analysis could bring a meaningful way to closely look at scattered results. A large number of virtual LVDTs are placed on the surface of specimens in order to collect statistical parameters of deformation and strain. Values of mean strain, standard deviation and coeffcient of variations for each material are calculated and correlated with the failure type of the corresponding material (either brittle or ductile). The main limiters for standard deviation and coeffcient of variations for brittle and ductile failure, in pre-peak and post-peak behavior are established and presented in this paper. These limiters help us determine whether failure is brittle or ductile without determining of stress level in the material

    DNA damage response and repair in ovarian cancer: Potential targets for therapeutic strategies

    No full text
    corecore