62 research outputs found

    Electrical performance of efficient quad-crescent-shaped Si nanowire solar cell

    Get PDF
    The electrical characteristics of quad-crescent-shaped silicon nanowire (NW) solar cells (SCs) are numerically analyzed and as a result their performance optimized. The structure discussed consists of four crescents, forming a cavity that permits multiple light scattering with high trapping between the NWs. Additionally, new modes strongly coupled to the incident light are generated along the NWs. As a result, the optical absorption has been increased over a large portion of light wavelengths and hence the power conversion efficiency (PCE) has been improved. The electron–hole (e–h) generation rate in the design reported has been calculated using the 3D finite difference time domain method. Further, the electrical performance of the SC reported has been investigated through the finite element method, using the Lumerical charge software package. In this investigation, the axial and core–shell junctions were analyzed looking at the reported crescent and, as well, conventional NW designs. Additionally, the doping concentration and NW-junction position were studied in this design proposed, as well as the carrier-recombination-and-lifetime effects. This study has revealed that the high back surface field layer used improves the conversion efficiency by ∼ 80%. Moreover, conserving the NW radial shell as a low thickness layer can efficiently reduce the NW sidewall recombination effect. The PCE and short circuit current were determined to be equal to 18.5% and 33.8 mA/cm2^{2} for the axial junction proposed. However, the core–shell junction shows figures of 19% and 34.9 mA/cm2^{2}. The suggested crescent design offers an enhancement of 23% compared to the conventional NW, for both junctions. For a practical surface recombination velocity of 102^{2} cm/s, the PCE of the proposed design, in the axial junction, has been reduced to 16.6%, with a reduction of 11%. However, the core–shell junction achieves PCE of 18.7%, with a slight reduction of 1.6%. Therefore, the optoelectronic performance of the core–shell junction was marginally affected by the NW surface recombination, compared to the axial junction

    Mid-infrared water pollutant sensor based on SPR-PCF

    Get PDF
    In this paper, a highly sensitive water pollutant optical sensor is proposed and analyzed. The suggested sensor consists of photonic crystal fiber with a core surrounded by four elliptical holes infiltrated with the studied analyte (pure/polluted water sample). In addition, two gold nanorods are mounted horizontally at the inner surfaces of two horizontal elliptical holes. The proposed sensor can efficiently detect dissolved pollutants in water such as nitric acid (HNO3) with concentrations of 14, 23 and 35% and H2O2 with concentrations of 7, 15 and 30%. The dissolved pollutants in water (analyte) have refractive indices (RIs) in the range of 1.350–1.355 in the mid infrared regime from λ = 2200 nm to λ = 3500 nm. A fully vectorial finite element method (FVFEM) is employed for the modal analysis of the reported structure. The geometrical parameters are studied to maximize the RI sensitivity where a high sensitivity of 36,000 nm/RIU is achieved between the studied RIs of 1.350 and 1.355. The obtained RI sensitivity is higher than those of the recent reported sensors in the literature especially those operating in the mid infrared wavelengths

    Simulation of a Sensitive Mid-infrared (MIR) D-Shaped Optical Fiber Water Pollutant Sensor

    Get PDF
    In this work, an efficient optical sensor is proposed for the sensitive detection of various pollutants in water. The suggested optical sensor is based on an indium fluoride (InF3) glass fabricated as a D-shaped optical fiber. The polished surface of the D-shaped fiber is coated with a gold grating to induce the surface plasmon resonance (SPR). The SPR depends on the optical properties of the polluted water analyte in physical contact with the grating. The proposed optical SPR fiber sensor operates within the mid-infrared (MIR) range (3000–4500 nm) to detect any slight change in the water refractive index (RI) due to any pollutants. The full vectorial finite element method (FVFEM) is utilized to calculate the modal properties of the reported sensor. High sensor sensitivity of 17,834 nm/RIU (refractive index units) is achieved for the detection of dissolution of nitric acid (HNO3) in water at a concentration of 14% v/v (volume/volume). Additionally, the reported sensor detects the dissolution of hydrogen peroxide (H2O2) in water investigated at concentrations of 15% v/v and 30% v/v, with sensitivities of 12,308 nm/RIU and 17,143 nm/RIU, respectively. Further, suspending polystyrene beads of diameter 0.1 μm in the water at a concentration of 10% v/v gives a maximum sensitivity of 5333 nm/RIU. Therefore, the proposed sensor provides a promising approach for the detection of water pollutants in the MIR wavelength regime, rather than the weaker response in the near infrared

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Effects of alirocumab on types of myocardial infarction: insights from the ODYSSEY OUTCOMES trial

    Get PDF
    Aims  The third Universal Definition of Myocardial Infarction (MI) Task Force classified MIs into five types: Type 1, spontaneous; Type 2, related to oxygen supply/demand imbalance; Type 3, fatal without ascertainment of cardiac biomarkers; Type 4, related to percutaneous coronary intervention; and Type 5, related to coronary artery bypass surgery. Low-density lipoprotein cholesterol (LDL-C) reduction with statins and proprotein convertase subtilisin–kexin Type 9 (PCSK9) inhibitors reduces risk of MI, but less is known about effects on types of MI. ODYSSEY OUTCOMES compared the PCSK9 inhibitor alirocumab with placebo in 18 924 patients with recent acute coronary syndrome (ACS) and elevated LDL-C (≥1.8 mmol/L) despite intensive statin therapy. In a pre-specified analysis, we assessed the effects of alirocumab on types of MI. Methods and results  Median follow-up was 2.8 years. Myocardial infarction types were prospectively adjudicated and classified. Of 1860 total MIs, 1223 (65.8%) were adjudicated as Type 1, 386 (20.8%) as Type 2, and 244 (13.1%) as Type 4. Few events were Type 3 (n = 2) or Type 5 (n = 5). Alirocumab reduced first MIs [hazard ratio (HR) 0.85, 95% confidence interval (CI) 0.77–0.95; P = 0.003], with reductions in both Type 1 (HR 0.87, 95% CI 0.77–0.99; P = 0.032) and Type 2 (0.77, 0.61–0.97; P = 0.025), but not Type 4 MI. Conclusion  After ACS, alirocumab added to intensive statin therapy favourably impacted on Type 1 and 2 MIs. The data indicate for the first time that a lipid-lowering therapy can attenuate the risk of Type 2 MI. Low-density lipoprotein cholesterol reduction below levels achievable with statins is an effective preventive strategy for both MI types.For complete list of authors see http://dx.doi.org/10.1093/eurheartj/ehz299</p

    Effect of alirocumab on mortality after acute coronary syndromes. An analysis of the ODYSSEY OUTCOMES randomized clinical trial

    Get PDF
    Background: Previous trials of PCSK9 (proprotein convertase subtilisin-kexin type 9) inhibitors demonstrated reductions in major adverse cardiovascular events, but not death. We assessed the effects of alirocumab on death after index acute coronary syndrome. Methods: ODYSSEY OUTCOMES (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab) was a double-blind, randomized comparison of alirocumab or placebo in 18 924 patients who had an ACS 1 to 12 months previously and elevated atherogenic lipoproteins despite intensive statin therapy. Alirocumab dose was blindly titrated to target achieved low-density lipoprotein cholesterol (LDL-C) between 25 and 50 mg/dL. We examined the effects of treatment on all-cause death and its components, cardiovascular and noncardiovascular death, with log-rank testing. Joint semiparametric models tested associations between nonfatal cardiovascular events and cardiovascular or noncardiovascular death. Results: Median follow-up was 2.8 years. Death occurred in 334 (3.5%) and 392 (4.1%) patients, respectively, in the alirocumab and placebo groups (hazard ratio [HR], 0.85; 95% CI, 0.73 to 0.98; P=0.03, nominal P value). This resulted from nonsignificantly fewer cardiovascular (240 [2.5%] vs 271 [2.9%]; HR, 0.88; 95% CI, 0.74 to 1.05; P=0.15) and noncardiovascular (94 [1.0%] vs 121 [1.3%]; HR, 0.77; 95% CI, 0.59 to 1.01; P=0.06) deaths with alirocumab. In a prespecified analysis of 8242 patients eligible for ≥3 years follow-up, alirocumab reduced death (HR, 0.78; 95% CI, 0.65 to 0.94; P=0.01). Patients with nonfatal cardiovascular events were at increased risk for cardiovascular and noncardiovascular deaths (P<0.0001 for the associations). Alirocumab reduced total nonfatal cardiovascular events (P<0.001) and thereby may have attenuated the number of cardiovascular and noncardiovascular deaths. A post hoc analysis found that, compared to patients with lower LDL-C, patients with baseline LDL-C ≥100 mg/dL (2.59 mmol/L) had a greater absolute risk of death and a larger mortality benefit from alirocumab (HR, 0.71; 95% CI, 0.56 to 0.90; Pinteraction=0.007). In the alirocumab group, all-cause death declined wit h achieved LDL-C at 4 months of treatment, to a level of approximately 30 mg/dL (adjusted P=0.017 for linear trend). Conclusions: Alirocumab added to intensive statin therapy has the potential to reduce death after acute coronary syndrome, particularly if treatment is maintained for ≥3 years, if baseline LDL-C is ≥100 mg/dL, or if achieved LDL-C is low. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01663402

    Polarization Rotator Based on Soft Glass Photonic Crystal Fiber With Liquid Crystal Core

    No full text

    Novel Design of High Directivity Hybrid Yagi-Uda Antenna

    No full text
    In this paper, a novel design of broadband optical antenna with high directivity is introduced and analyzed using finite integration method (FIT). The proposed design consists of cylindrical nanoantenna with silver core surrounded by silicon cladding. The different geometrical parameters have been tuned to maximize the directivity. The proposed design offers high directivity of 14.8 which exceeds those of silicon nanospheres counterparts of directivity 12 with enhancement of 23 % at wavelength of 500 nm

    Ultra high resolution point spread function based on photonic crystal lens for 3D biomedical applications

    No full text
    In this paper, a novel design of superlens based on photonic bandgap structure for high resolution point spread function (PSF) is reported at a wavelength of 3 μm. The lens is able to generate a non-difraction Bessel beam with a number of focusing points with variant resolution limits. The optimized structure provides high resolution in both lateral and axial directions. The maximum achieved lateral resolution of PSF is down to~0.27λ with corresponding axial resolution down to~0.57λ attaining a FOM, the inverse of the product of both resolution limits, of~6.49. Meanwhile, the maximum axial resolution is down to~0.4λ with corresponding lateral resolution down to~0.33λ with a FOM of~7.34. In addition, the proposed design is able to generate a focusing point extended in space up to~0.98 µm with a sub-difraction lateral resolution down to~0.47λ. Furthermore, the reported superlens demonstrates a sub-difraction focusing in lateral direction along the range the bandgap wavelengths (from 2.4 to 3.6 µm) showing a signifcant increase of focal depth when decreasing the operating wavelength. Remarkably, a high focal depth up to~1.77 µm is achieved at the operating wavelength of 2.6 µm. The suggested design has a tremendous potential in 3D biological imaging and biosensing application
    corecore