115 research outputs found

    Heat transfer characteristics of fullerene and titania nanotube nanofluids under agitated quench conditions

    Get PDF
    Distilled water and aqueous fullerene nanofluids having concentrations of 0.02, 0.2, and 0.4 vol % and titania (titanium dioxide, TiO2) nanofluids of 0.0002, 0.002, and 0.02 vol % were analyzed for heat transfer characteristics. Quenching mediums were stirred at impeller speeds of 0, 500, 1,000, and 1,500 RPMs in a typical Tensi agitation system. During the quenching process, a metal probe made of ISO 9950 Inconel was used to record the temperature history. The inverse heat conduction method was used to calculate the spatial and temporal heat flux. The nanofluid rewetting properties were measured and matched to those of distilled water. The maximum mean heat flux was 3.26 MW/m2, and the quickest heat extraction was 0.2 vol % fullerene nanofluid, according to the results of the heat transfer investigation

    Discovery of platelet-type 12-human lipoxygenase selective inhibitors by high-throughput screening of structurally diverse libraries.

    Get PDF
    Human lipoxygenases (hLO) have been implicated in a variety of diseases and cancers and each hLO isozyme appears to have distinct roles in cellular biology. This fact emphasizes the need for discovering selective hLO inhibitors for both understanding the role of specific lipoxygenases in the cell and developing pharmaceutical therapeutics. To this end, we have modified a known lipoxygenase assay for high-throughput (HTP) screening of both the National Cancer Institute (NCI) and the UC Santa Cruz marine extract library (UCSC-MEL) in search of platelet-type 12-hLO (12-hLO) selective inhibitors. The HTP screen led to the characterization of five novel 12-hLO inhibitors from the NCI repository. One is the potent but non-selective michellamine B, a natural product, anti-viral agent. The other four compounds were selective inhibitors against 12-hLO, with three being synthetic compounds and one being alpha-mangostin, a natural product, caspase-3 pathway inhibitor. In addition, a selective inhibitor was isolated from the UCSC-MEL (neodysidenin), which has a unique chemical scaffold for a hLO inhibitor. Due to the unique structure of neodysidenin, steady-state inhibition kinetics were performed and its mode of inhibition against 12-hLO was determined to be competitive (K(i)=17microM) and selective over reticulocyte 15-hLO-1 (K(i) 15-hLO-1/12-hLO\u3e30)

    Networked buffering: a basic mechanism for distributed robustness in complex adaptive systems

    Get PDF
    A generic mechanism - networked buffering - is proposed for the generation of robust traits in complex systems. It requires two basic conditions to be satisfied: 1) agents are versatile enough to perform more than one single functional role within a system and 2) agents are degenerate, i.e. there exists partial overlap in the functional capabilities of agents. Given these prerequisites, degenerate systems can readily produce a distributed systemic response to local perturbations. Reciprocally, excess resources related to a single function can indirectly support multiple unrelated functions within a degenerate system. In models of genome:proteome mappings for which localized decision-making and modularity of genetic functions are assumed, we verify that such distributed compensatory effects cause enhanced robustness of system traits. The conditions needed for networked buffering to occur are neither demanding nor rare, supporting the conjecture that degeneracy may fundamentally underpin distributed robustness within several biotic and abiotic systems. For instance, networked buffering offers new insights into systems engineering and planning activities that occur under high uncertainty. It may also help explain recent developments in understanding the origins of resilience within complex ecosystems. \ud \u

    Exobiology of the Venusian Clouds: New Insights into Habitability through Terrestrial Models and Methods of Detection

    Get PDF
    The search for life beyond Earth has focused on Mars and the icy moons Europa and Enceladus, all of which are considered a safe haven for life due to evidence of current or past water. The surface of Venus, on the other hand, has extreme conditions that make it a nonhabitable environment to life as we know it. This is in contrast, however, to its cloud layer, which, while still an extreme environment, may prove to be a safe haven for some extreme forms of life similar to extremophiles on Earth. We consider the venusian clouds a habitable environment based on the presence of (1) a solvent for biochemical reactions, (2) appropriate physicochemical conditions, (3) available energy, and (4) biologically relevant elements. The diversity of extreme microbial ecosystems on Earth has allowed us to identify terrestrial chemolithoautotrophic microorganisms that may be analogs to putative venusian organisms. Here, we hypothesize and describe biological processes that may be performed by such organisms in the venusian clouds. To detect putative venusian organisms, we describe potential biosignature detection methods, which include metal-microbial interactions and optical methods. Finally, we describe currently available technology that can potentially be used for modeling and simulation experiments. © Copyright 2021, Mary Ann Liebert, Inc., publishers 2021.NASA HQ Planetary ScienceSpace Research Institute of the Russian Academy of SciencesUniversity of Wisconsin-Madison, UWAustrian Science Fund, FWF, (V333)The work presented here was motivated by fruitful dialogue at the 2019 Venus Cloud Layer Habitability and Landing Site Selection workshop organized by the Roscosmos-IKI/NASA Venera-D Joint Science Definition Team and supported by NASA HQ Planetary Science (A. Ocampo, Lead Venus Scientist) and Astrobiology programs (M. Voytek, Senior Scientist for Astrobiology) and the Space Research Institute of the Russian Academy of Sciences (IKI RAN). JAC acknowledges the support of the Genome Sciences Training Program at University of Wisconsin–Madison. TM is grateful to the Austrian Science Fund (FWF) for providing support through the Elise-Richter Research fellowship (V333). We thank Sanjay Limaye for his support, including of this publication, and for resparking the conversation on Venus astrobiology

    A closed loop brain-machine interface for epilepsy control using dorsal column electrical stimulation

    Get PDF
    Although electrical neurostimulation has been proposed as an alternative treatment for drug-resistant cases of epilepsy, current procedures such as deep brain stimulation, vagus, and trigeminal nerve stimulation are effective only in a fraction of the patients. Here we demonstrate a closed loop brain-machine interface that delivers electrical stimulation to the dorsal column (DCS) of the spinal cord to suppress epileptic seizures. Rats were implanted with cortical recording microelectrodes and spinal cord stimulating electrodes, and then injected with pentylenetetrazole to induce seizures. Seizures were detected in real time from cortical local field potentials, after which DCS was applied. This method decreased seizure episode frequency by 44% and seizure duration by 38%. We argue that the therapeutic effect of DCS is related to modulation of cortical theta waves, and propose that this closed-loop interface has the potential to become an effective and semi-invasive treatment for refractory epilepsy and other neurological disorders.We are grateful for the assistance from Jim Meloy for the design and production of the multielectrode arrays as well as setup development and maintenance, Laura Oliveira, Terry Jones, and Susan Halkiotis for administrative assistance and preparation of the manuscript. This work was funded by a grant from The Hartwell Foundation.info:eu-repo/semantics/publishedVersio

    Recurrence of Primary Sclerosing Cholangitis After Liver Transplant in Children : An International Observational Study

    Get PDF
    Background and Aims Recurrent primary sclerosing cholangitis (rPSC) following liver transplant (LT) has a negative impact on graft and patient survival; little is known about risk factors for rPSC or disease course in children. Approach and Results We retrospectively evaluated risk factors for rPSC in 140 children from the Pediatric PSC Consortium, a multicenter international registry. Recipients underwent LT for PSC and had >90 days of follow-up. The primary outcome, rPSC, was defined using Graziadei criteria. Median follow-up after LT was 3 years (interquartile range 1.1-6.1). rPSC occurred in 36 children, representing 10% and 27% of the subjects at 2 years and 5 years following LT, respectively. Subjects with rPSC were younger at LT (12.9 vs. 16.2 years), had faster progression from PSC diagnosis to LT (2.5 vs. 4.1 years), and had higher alanine aminotransferase (112 vs. 66 IU/L) at LT (all P < 0.01). Inflammatory bowel disease was more prevalent in the rPSC group (86% vs. 66%; P = 0.025). After LT, rPSC subjects had more episodes of biopsy-proved acute rejection (mean 3 vs. 1; P < 0.001), and higher prevalence of steroid-refractory rejection (41% vs. 20%; P = 0.04). In those with rPSC, 43% developed complications of portal hypertension, were relisted for LT, or died within 2 years of the diagnosis. Mortality was higher in the rPSC group (11.1% vs. 2.9%; P = 0.05). Conclusions The incidence of rPSC in this cohort was higher than previously reported, and was associated with increased morbidity and mortality. Patients with rPSC appeared to have a more aggressive, immune-reactive phenotype. These findings underscore the need to understand the immune mechanisms of rPSC, to lay the foundation for developing new therapies and improve outcomes in this challenging population.Peer reviewe

    Prader-Willi syndrome: A primer for clinicians

    Get PDF
    The advent of sensitive genetic testing modalities for the diagnosis of Prader-Willi syndrome has helped to define not only the phenotypic features of the syndrome associated with the various genotypes but also to anticipate clinical and psychological problems that occur at each stage during the life span. With advances in hormone replacement therapy, particularly growth hormone children born in circumstances where therapy is available are expected to have an improved quality of life as compared to those born prior to growth hormone

    Neuroprotection by adenosine in the brain: From A1 receptor activation to A2A receptor blockade

    Get PDF
    Adenosine is a neuromodulator that operates via the most abundant inhibitory adenosine A1 receptors (A1Rs) and the less abundant, but widespread, facilitatory A2ARs. It is commonly assumed that A1Rs play a key role in neuroprotection since they decrease glutamate release and hyperpolarize neurons. In fact, A1R activation at the onset of neuronal injury attenuates brain damage, whereas its blockade exacerbates damage in adult animals. However, there is a down-regulation of central A1Rs in chronic noxious situations. In contrast, A2ARs are up-regulated in noxious brain conditions and their blockade confers robust brain neuroprotection in adult animals. The brain neuroprotective effect of A2AR antagonists is maintained in chronic noxious brain conditions without observable peripheral effects, thus justifying the interest of A2AR antagonists as novel protective agents in neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease, ischemic brain damage and epilepsy. The greater interest of A2AR blockade compared to A1R activation does not mean that A1R activation is irrelevant for a neuroprotective strategy. In fact, it is proposed that coupling A2AR antagonists with strategies aimed at bursting the levels of extracellular adenosine (by inhibiting adenosine kinase) to activate A1Rs might constitute the more robust brain neuroprotective strategy based on the adenosine neuromodulatory system. This strategy should be useful in adult animals and especially in the elderly (where brain pathologies are prevalent) but is not valid for fetus or newborns where the impact of adenosine receptors on brain damage is different
    corecore