108 research outputs found
A Systematic Survey of the Effects of Wind Mass Loss Algorithms on the Evolution of Single Massive Stars
Mass loss is a key uncertainty in the evolution of massive stars. Stellar
evolution calculations must employ parametric algorithms for mass loss, and
usually only include stellar winds. We carry out a parameter study of the
effects of wind mass loss on massive star evolution using the open-source
stellar evolution code MESA. We provide a systematic comparison of wind mass
loss algorithms for solar-metallicity, nonrotating, single stars in the initial
mass range of . We consider combinations drawn from two hot
phase algorithms, three cool phase algorithms, and two Wolf-Rayet algorithms.
We consider linear wind efficiency scale factors of , , and to
account for reductions in mass loss rates due to wind inhomogeneities. We find
that the initial to final mass mapping for each zero-age main-sequence (ZAMS)
mass has a uncertainty if all algorithm combinations and wind
efficiencies are considered. The ad-hoc efficiency scale factor dominates this
uncertainty. While the final total mass and internal structure of our models
vary tremendously with mass loss treatment, final observable parameters are
much less sensitive for ZAMS mass . This indicates that
uncertainty in wind mass loss does not negatively affect estimates of the ZAMS
mass of most single-star supernova progenitors from pre-explosion observations.
Furthermore, we show that the internal structure of presupernova stars is
sensitive to variations in both main sequence and post main-sequence mass loss.
We find that the compactness parameter varies by as much as
for a given ZAMS mass evolved with different wind efficiencies and mass
loss algorithm combinations. [abridged]Comment: Accepted for publication on A&A, 22 pages + 2 appendixes, 12 figures,
online input parameters available at https://stellarcollapse.org/renzo2017
and data at https://zenodo.org/record/292924#.WK0q2tWi6W
A High-Resolution Multiband Survey of Westerlund 2 With the Hubble Space Telescope I: Is the Massive Star Cluster Double?
We present first results from a high resolution multi-band survey of the
Westerlund 2 region with the Hubble Space Telescope. Specifically, we imaged
Westerlund 2 with the Advanced Camera for Surveys through the , ,
and filters and with the Wide Field Camera 3 in the , ,
and filters. We derive the first high resolution pixel-to-pixel map of
the color excess of the gas associated with the cluster, combining
the H () and Pa () line observations. We
demonstrate that, as expected, the region is affected by significant
differential reddening with a median of ~mag. After separating
the populations of cluster members and foreground contaminants using a
vs. color-magnitude diagram, we identify a pronounced
pre-main-sequence population in Westerlund 2 showing a distinct turn-on. After
dereddening each star of Westerlund 2 individually in the color-magnitude
diagram we find via over-plotting PARSEC isochrones that the distance is in
good agreement with the literature value of ~kpc. With
zero-age-main-sequence fitting to two-color-diagrams, we derive a value of
total to selective extinction of . A spatial density map of
the stellar content reveals that the cluster might be composed of two clumps.
We estimate the same age of 0.5-2.0 Myr for both clumps. While the two clumps
appear to be coeval, the northern clump shows a lower stellar
surface density.Comment: 24 pages, 27 figures, 7 tables; Accepted for publication to The
Astronomical Journa
Overlapping properties of the short membrane-active peptide BP100 with (i) Polycationic TAT and (ii) α-helical Magainin Family Peptides
Copyright © 2021 Mink, Strandberg, Wadhwani, Melo, Reichert, Wacker, Castanho and Ulrich. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.BP100 is a short, designer-made membrane-active peptide with multiple functionalities: antimicrobial, cell-penetrating, and fusogenic. Consisting of five lysines and 6 hydrophobic residues, BP100 was shown to bind to lipid bilayers as an amphipathic a-helix, but its mechanism of action remains unclear. With these features, BP100 embodies the characteristics of two distinctly different classes of membrane-active peptides, which have been studied in detail and where the mechanism of action is better understood. On the one hand, its amphiphilic helical structure is similar to the pore forming magainin family of antimicrobial peptides, though BP100 is much too short to span the membrane. On the other hand, its length and high charge density are reminiscent of the HIV-TAT family of cell penetrating peptides, for which inverted micelles have been postulated as translocation intermediates, amongst other mechanisms. Assays were performed to test the antimicrobial and hemolytic activity, the induced leakage and fusion of lipid vesicles, and cell uptake. From these results the functional profiles of BP100, HIV-TAT, and the magainin-like peptides magainin 2, PGLa, MSI-103, and MAP were determined and compared. It is observed that the activity of BP100 resembles most closely the much longer amphipathic a-helical magainin-like peptides, with high antimicrobial activity along with considerable fusogenic and hemolytic effects. In contrast, HIV-TAT shows almost no antimicrobial, fusogenic, or hemolytic effects. We conclude that the amphipathic helix of BP100 has a similar membranebased activity as magainin-like peptides and may have a similar mechanism of action.This work was supported financially by the BIF-TM program of the Helmholtz-Gemeinschaft; by the DFG grant INST 121384/58-1 FUGG; and by the DAAD “Portugal - Acções Integradas Luso-Alemãs/DAAD-GRIC” grant D/07/13644.info:eu-repo/semantics/publishedVersio
Temperature‐Dependent Re‐alignment of the Short Multifunctional Peptide BP100 in Membranes Revealed by Solid‐State NMR Spectroscopy and Molecular Dynamics Simulations
BP100 is a cationic undecamer peptide with antimicrobial and cell-penetrating activities. The orientation of this amphiphilic α-helix in lipid bilayers was examined under numerous conditions using solid-state 19F, 15N and 2H NMR. At high temperatures in saturated phosphatidylcholine lipids, BP100 lies flat on the membrane surface, as expected. Upon lowering the temperature towards the lipid phase transition, the helix is found to flip into an upright transmembrane orientation. In thin bilayers, this inserted state was stable at low peptide concentration, but thicker membranes required higher peptide concentrations. In the presence of lysolipids, the inserted state prevailed even at high temperature. Molecular dynamics simulations suggest that BP100 monomer insertion can be stabilized by snorkeling lysine side chains. These results demonstrate that even a very short helix like BP100 can span (and thereby penetrate through) a cellular membrane under suitable conditions
High resolution spectroscopy of methyltrioxorhenium: towards the observation of parity violation in chiral molecules
Originating from the weak interaction, parity violation in chiral molecules
has been considered as a possible origin of the biohomochirality. It was
predicted in 1974 but has never been observed so far. Parity violation should
lead to a very tiny frequency difference in the rovibrational spectra of the
enantiomers of a chiral molecule. We have proposed to observe this predicted
frequency difference using the two photon Ramsey fringes technique on a
supersonic beam. Promising candidates for this experiment are chiral oxorhenium
complexes, which present a large effect, can be synthesized in large quantity
and enantiopure form, and can be seeded in a molecular beam. As a first step
towards our objective, a detailed spectroscopic study of methyltrioxorhenium
(MTO) has been undertaken. It is an ideal test molecule as the achiral parent
molecule of chiral candidates for the parity violation experiment. For the
187Re MTO isotopologue, a combined analysis of Fourier transform microwave and
infrared spectra as well as ultra-high resolution CO2 laser absorption spectra
enabled the assignment of 28 rotational lines and 71 rovibrational lines, some
of them with a resolved hyperfine structure. A set of spectroscopic parameters
in the ground and first excited state, including hyperfine structure constants,
was obtained for the antisymmetric Re=O stretching mode of this molecule. This
result validates the experimental approach to be followed once a chiral
derivative of MTO will be synthesized, and shows the benefit of the combination
of several spectroscopic techniques in different spectral regions, with
different set-ups and resolutions. First high resolution spectra of jet-cooled
MTO, obtained on the set-up being developed for the observation of molecular
parity violation, are shown, which constitutes a major step towards the
targeted objective.Comment: 20 pages, 6 figure
Recommended from our members
Functional connectivity between prefrontal and parietal cortex drives visuospatial attention shifts
It is well established that the frontal eye-fields (FEF) in the dorsal attention network (DAN) guide top-down selective attention. In addition, converging evidence implies a causal role for the FEF in attention shifting, which is also known to recruit the ventral attention network (VAN) and fronto-striatal regions. To investigatethe causal influence of the FEF as (part of) a central hub between these networks, we applied thetaburst transcranial magnetic stimulation (TBS) off-line, combined with functional magnetic resonance (fMRI) during a cued visuo-spatial attention shifting paradigm.
We found that TBS over the right FEF impaired performance on a visual discrimination task in both hemifields following attention shifts, while only left hemifield performance was affected when participants were
cued to maintain the focus of attention. These effects recovered ca. 20 min post stimulation. Furthermore, particularly following attention shifts, TBS suppressed the neural signal in bilateral FEF, right inferior and superior parietal lobule (IPL/SPL) and bilateral supramarginal gyri (SMG). Immediately post stimulation, functional connectivity was impaired between right FEF and right SMG as well as right putamen. Importantly,
the extent of decreased connectivity between right FEF and right SMG correlated with behavioural impairment
following attention shifts.
The main finding of this study demonstrates that influences from right FEF on SMG in the ventral attention network causally underly attention shifts, presumably by enabling disengagement from the current focus of attention
The Resolved Stellar Populations in the LEGUS Galaxies1
The Legacy ExtraGalactic UV Survey (LEGUS) is a multiwavelength Cycle 21 Treasury program on the Hubble Space Telescope. It studied 50 nearby star-forming galaxies in 5 bands from the near-UV to the I-band, combining new Wide Field Camera 3 observations with archival Advanced Camera for Surveys data. LEGUS was designed to investigate how star formation occurs and develops on both small and large scales, and how it relates to the galactic environments. In this paper we present the photometric catalogs for all the apparently single stars identified in the 50 LEGUS galaxies. Photometric catalogs and mosaicked images for all filters are available for download. We present optical and near-UV color-magnitude diagrams for all the galaxies. For each galaxy we derived the distance from the tip of the red giant branch. We then used the NUV color-magnitude diagrams to identify stars more massive than 14 M o, and compared their number with the number of massive stars expected from the GALEX FUV luminosity. Our analysis shows that the fraction of massive stars forming in star clusters and stellar associations is about constant with the star formation rate. This lack of a relation suggests that the timescale for evaporation of unbound structures is comparable or longer than 10 Myr. At low star formation rates this translates to an excess of mass in clustered environments as compared to model predictions of cluster evolution, suggesting that a significant fraction of stars form in unbound systems
Legacy ExtraGalactic UV Survey with the Hubble Space Telescope: Stellar Cluster Catalogs and First Insights into Cluster Formation and Evolution in NGC 628
We report the large effort that is producing comprehensive high-level young star cluster (YSC) catalogs for a significant fraction of galaxies observed with the Legacy ExtraGalactic UV Survey (LEGUS) Hubble treasury program. We present the methodology developed to extract cluster positions, verify their genuine nature, produce multiband photometry (from NUV to NIR), and derive their physical properties via spectral energy distribution fitting analyses. We use the nearby spiral galaxy NGC 628 as a test case for demonstrating the impact that LEGUS will have on our understanding of the formation and evolution of YSCs and compact stellar associations within their host galaxy. Our analysis of the cluster luminosity function from the UV to the NIR finds a steepening at the bright end and at all wavelengths suggesting a dearth of luminous clusters. The cluster mass function of NGC 628 is consistent with a power-law distribution of slopes and a truncation of a few times 105. After their formation, YSCs and compact associations follow different evolutionary paths. YSCs survive for a longer time frame, confirming their being potentially bound systems. Associations disappear on timescales comparable to hierarchically organized star-forming regions, suggesting that they are expanding systems. We find mass-independent cluster disruption in the inner region of NGC 628, while in the outer part of the galaxy there is little or no disruption. We observe faster disruption rates for low mass (≤104) clusters, suggesting that a mass-dependent component is necessary to fully describe the YSC disruption process in NGC 628
The Brightest Young Star Clusters in NGC 5253
67 pages; 11 figures; 7 tables. Accepted for publication in the Astrophysical JournalThe nearby dwarf starburst galaxy NGC5253 hosts a number of young, massive star clusters, the two youngest of which are centrally concentrated and surrounded by thermal radio emission (the `radio nebula'). To investigate the role of these clusters in the starburst energetics, we combine new and archival Hubble Space Telescope images of NGC5253 with wavelength coverage from 1500 Ang to 1.9 micron in 13 filters. These include H-alpha, P-beta, and P-alpha, and the imaging from the Hubble Treasury Program LEGUS (Legacy Extragalactic UV Survey). The extraordinarily well-sampled spectral energy distributions enable modeling with unprecedented accuracy the ages, masses, and extinctions of the 9 optically brightest clusters (M_V < -8.8) and the two young radio nebula clusters. The clusters have ages ~1-15 Myr and masses ~1x10^4 - 2.5x10^5 M_sun. The clusters' spatial location and ages indicate that star formation has become more concentrated towards the radio nebula over the last ~15 Myr. The most massive cluster is in the radio nebula; with a mass 2.5x10^5 M_sun and an age ~1 Myr, it is 2-4 times less massive and younger than previously estimated. It is within a dust cloud with A_V~50 mag, and shows a clear nearIR excess, likely from hot dust. The second radio nebula cluster is also ~1 Myr old, confirming the extreme youth of the starburst region. These two clusters account for about half of the ionizing photon rate in the radio nebula, and will eventually supply about 2/3 of the mechanical energy in present-day shocks. Additional sources are required to supply the remaining ionizing radiation, and may include very massive stars.Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program # 13364. Support for program # 13364 was provided by NASA through a grant from the Space Telescope Science Institute.
Based also on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA).
This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
Part of this work was conducted while D.C. was a Raymond and Beverley Sackler Distinguished Visitor at the Institute of Astronomy, University of Cambridge (UK), and an Overseas Fellow at the Churchill College (Cambridge, UK). D.C. acknowledges the kind hospitality of both the Institute and the College. A.S.E. was supported by the Taiwan, R.O.C. Ministry of Science and Technology grant MoST 102-2119-M-001-MY3. M.F. acknowledges support by the Science and Technology Facilities Council [grant number ST/L00075X/1]. D.A.G. kindly acknowledges financial support by the German Research Foundation (DFG) through grant GO 1659/3-2. E.Z. acknowledges research funding from the Swedish Research Council (project 2011-5349)
Legacy extragalactic UV survey (LEGUS) with the hubble space telescope. I. Survey description
The Legacy ExtraGalactic UV Survey (LEGUS) is a Cycle 21 Treasury program on the Hubble Space Telescope aimed at the investigation of star formation and its relation with galactic environment in nearby galaxies, from the scales of individual stars to those of ∼kiloparsec-size clustered structures. Five-band imaging from the nearultraviolet to the I band with the Wide-Field Camera 3 (WFC3), plus parallel optical imaging with the Advanced Camera for Surveys (ACS), is being collected for selected pointings of 50 galaxies within the local 12 Mpc. The filters used for the observations with the WFC3 are F275W (λ2704 A˚), F336W(λ3355 A˚), F438W(λ4325 A˚), F555W(λ5308 A˚), and F814W(ë8024 A˚); the parallel observations with the ACS use the filters F435W (λ4328 A˚), F606W(λ5921 A˚), and F814W(λ8057 A˚). The multiband images are yielding accurate recent (≲50 Myr) star formation histories from resolved massive stars and the extinction-corrected ages and masses of star clusters and associations. The extensive inventories of massive stars and clustered systems will be used to investigate the spatial and temporal evolution of star formation within galaxies. This will, in turn, inform theories of galaxy evolution and improve the understanding of the physical underpinning of the gas-star formation relation and the nature of star formation at high redshift. This paper describes the survey, its goals and observational strategy, and the initial scientific results. Because LEGUS will provide a reference survey and a foundation for future observations with the James Webb Space Telescope and with ALMA, a large number of data products are planned for delivery to the community
- …