141 research outputs found

    A simple atomistic model for the simulation of the gel phase of lipid bilayers

    Get PDF
    In this paper we present the results of a large-scale numerical investigation of structural properties of a model of cell membrane, simulated as a bilayer of flexible molecules in vacuum. The study was performed by carrying out extensive Molecular Dynamics simulations, in the (NVE) micro-canonical ensemble, of two systems of different sizes (2x32 and 2x256 molecules), over a fairly large set of temperatures and densities, using parallel platforms and more standard serial computers. Depending on the dimension of the system, the dynamics was followed for physical times that go from few hundred of picoseconds for the largest system to 5--10 nanoseconds for the smallest one. We find that the bilayer remains stable even in the absence of water and neglecting Coulomb interactions in the whole range of temperatures and densities we have investigated. The extension of the region of physical parameters that we have explored has allowed us to study significant points in the phase diagram of the bilayer and to expose marked structural changes as density and temperature are varied, which are interpreted as the system passing from a crystal to a gel phase.Comment: 41 pages, 13 figure

    Parallel computing and molecular dynamics of biological membranes

    Get PDF
    In this talk I discuss the general question of the portability of Molecular Dynamics codes for diffusive systems on parallel computers of the APE family. The intrinsic single precision arithmetics of the today available APE platforms does not seem to affect the numerical accuracy of the simulations, while the absence of integer addressing from CPU to individual nodes puts strong constraints on the possible programming strategies. Liquids can be very satisfactorily simulated using the "systolic" method. For more complex systems, like the biological ones at which we are ultimately interested in, the "domain decomposition" approach is best suited to beat the quadratic growth of the inter-molecular computational time with the number of elementary components of the system. The promising perspectives of using this strategy for extensive simulations of lipid bilayers are briefly reviewed.Comment: 4 pages LaTeX, 2 figures included, espcrc2.sty require

    Current Methods to Unravel the Functional Properties of Lysosomal Ion Channels and Transporters

    Get PDF
    open18siA distinct set of channels and transporters regulates the ion fluxes across the lysosomal membrane. Malfunctioning of these transport proteins and the resulting ionic imbalance is involved in various human diseases, such as lysosomal storage disorders, cancer, as well as metabolic and neurodegenerative diseases. As a consequence, these proteins have stimulated strong interest for their suitability as possible drug targets. A detailed functional characterization of many lysosomal channels and transporters is lacking, mainly due to technical difficulties in applying the standard patch-clamp technique to these small intracellular compartments. In this review, we focus on current methods used to unravel the functional properties of lysosomal ion channels and transporters, stressing their advantages and disadvantages and evaluating their fields of applicability.openFesta M.; Minicozzi V.; Boccaccio A.; Lagostena L.; Gradogna A.; Qi T.; Costa A.; Larisch N.; Hamamoto S.; Pedrazzini E.; Milenkovic S.; Scholz-Starke J.; Ceccarelli M.; Vitale A.; Dietrich P.; Uozumi N.; Gambale F.; Carpaneto A.Festa, M.; Minicozzi, V.; Boccaccio, A.; Lagostena, L.; Gradogna, A.; Qi, T.; Costa, A.; Larisch, N.; Hamamoto, S.; Pedrazzini, E.; Milenkovic, S.; Scholz-Starke, J.; Ceccarelli, M.; Vitale, A.; Dietrich, P.; Uozumi, N.; Gambale, F.; Carpaneto, A

    Epigenetic and metabolic reprogramming of fibroblasts in Crohn's disease strictures reveals histone deacetylases as therapeutic targets.

    Get PDF
    BACKGROUND & AIMS: No effective therapeutic intervention exists for intestinal fibrosis in Crohn's disease [CD]. We characterised fibroblast subtypes, epigenetic and metabolic changes, and signalling pathways in CD fibrosis to inform future therapeutic strategies. METHODS: We undertook immunohistochemistry, metabolic, signalling pathway and Epigenetic [Transposase-Accessible Chromatin using sequencing] analyses associated with collagen production in CCD-18Co intestinal fibroblasts and primary fibroblasts isolated from stricturing [SCD] and non-stricturing [NSCD] CD small intestine. SCD/ NSCD fibroblasts were cultured with TGFβ and valproic acid [VPA]. RESULTS: Stricturing CD was characterised by distinct histone deacetylase [HDAC] expression profiles, particularly HDAC1, HDAC2, and HDAC7. As a proxy for HDAC activity, reduced numbers of H3K27ac+ cells were found in SCD compared to NSCD sections. Primary fibroblasts had increased extracellular lactate [increased glycolytic activity] and intracellular hydroxyproline [increased collagen production] in SCD compared to NSCD cultures. The metabolic effect of TGFβ-stimulation was reversed by the HDAC inhibitor VPA. SCD fibroblasts appear "metabolically primed" and responded more strongly to both TGFβ and VPA. Treatment with VPA revealed TGFβ-dependent and independent Collagen-I production in CCD-18Co cells and primary fibroblasts. VPA altered the epigenetic landscape with reduced chromatin accessibility at the COL1A1 and COL1A2 promoters. CONCLUSIONS: Increased HDAC expression profiles, H3K27ac hypoacetylation, a significant glycolytic phenotype, and metabolic priming, characterise SCD-derived as compared to NSCD fibroblasts. Our results reveal a novel epigenetic component to Collagen-I regulation and TGFβ-mediated CD fibrosis. HDAC inhibitor therapy may 'reset' the epigenetic changes associated with fibrosis

    Effectiveness of photodynamic therapy for mammary and extra-mammary Paget's disease: a state of the science review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Paget's disease is a rare skin disorder occurring in the breast (mammary) or in the groin, genital, peri-anal and axillary regions (extra-mammary). Typical treatment involves surgical excision, which in the case of extra-mammary Paget's disease, can lead to significant morbidity. Photodynamic therapy (PDT) which uses a topical or intravenous photosensitizing agent that is activated by a light source to ablate abnormal tissue, offers a minimally invasive alternative. The purpose of this study was to assess the effectiveness of photodynamic therapy in the treatment of Paget's disease.</p> <p>Methods</p> <p>Following Cochrane guidelines, a comprehensive systematic review of all clinical studies and reports examining the use of PDT for mammary and extra-mammary Paget's disease was conducted. Study quality was assessed using the Oxford Levels of Evidence Scale.</p> <p>Results</p> <p>21 retrospective and 2 prospective non-comparative studies were identified and included in the review: 9 case reports with 1-2 patients and 14 case series with 1-16 patients. These reports totalled 99 patients with 133 extra-mammary Paget's lesions and 3 patients (with 3 lesions) with mammary Paget's disease. Follow-up periods were typically one year or less, with 77/133 extra-mammary lesions exhibiting complete response to PDT. One recurrent mammary skin lesion and two mammary lesions treated concomitantly with surgery also exhibited complete responses.</p> <p>Conclusions</p> <p>Evidence of the effectiveness of PDT for Paget's disease is promising, but limited. This may, in part, be explained by the rarity of the condition, making controlled comparative clinical trials challenging.</p

    Amyloid-Beta (Aβ) D7H Mutation Increases Oligomeric Aβ42 and Alters Properties of Aβ-Zinc/Copper Assemblies

    Get PDF
    Amyloid precursor protein (APP) mutations associated with familial Alzheimer's disease (AD) usually lead to increases in amyloid β-protein (Aβ) levels or aggregation. Here, we identified a novel APP mutation, located within the Aβ sequence (AβD7H), in a Taiwanese family with early onset AD and explored the pathogenicity of this mutation. Cellular and biochemical analysis reveal that this mutation increased Aβ production, Aβ42/40 ratio and prolonged Aβ42 oligomer state with higher neurotoxicity. Because the D7H mutant Aβ has an additional metal ion-coordinating residue, histidine, we speculate that this mutation may promote susceptibility of Aβ to ion. When co-incubated with Zn2+ or Cu2+, AβD7H aggregated into low molecular weight oligomers. Together, the D7H mutation could contribute to AD pathology through a “double punch” effect on elevating both Aβ production and oligomerization. Although the pathogenic nature of this mutation needs further confirmation, our findings suggest that the Aβ N-terminal region potentially modulates APP processing and Aβ aggregation, and further provides a genetic indication of the importance of Zn2+ and Cu2+ in the etiology of AD

    Patient, tumor, and healthcare factors associated with regional variability in lung cancer survival: a Spanish high‑resolution population‑based study

    Get PDF
    Purpose The third most frequently diagnosed cancer in Europe in 2018 was lung cancer; it is also the leading cause of cancer death in Europe. We studied patient and tumor characteristics, and patterns of healthcare provision explaining regional variability in lung cancer survival in southern Spain. Methods A population-based cohort study included all 1196 incident first invasive primary lung cancer (C33–C34 according to ICD-10) cases diagnosed between 2010 and 2011 with follow-up until April 2015. Data were drawn from local population-based cancer registries and patients’ hospital medical records from all public and private hospitals from two regions in southern Spain. Results There was evidence of regional differences in lung cancer late diagnosis (58% stage IV in Granada vs. 65% in Huelva, p value < 0.001). Among patients with stage I, only 67% received surgery compared with 0.6% of patients with stage IV. Patients treated with a combination of radiotherapy, chemotherapy, and surgery had a 2-year mortality risk reduction of 94% compared with patients who did not receive any treatment (excess mortality risk 0.06; 95% CI 0.02–0.16). Geographical differences in survival were observed between the two regions: 35% vs. 26% at 1-year since diagnosis. Conclusions The observed geographic differences in survival between regions are due in part to the late cancer diagnosis which determines the use of less effective therapeutic options. Results from our study justify the need for promoting lung cancer early detection strategies and the harmonization of the best practice in lung cancer management and treatment.Maria Jose Sanchez Perez is supported by the Andalusian Department of Health: Research, Development, and Innovation Office project grant PI-0152/2017. Miguel Angel Luque-Fernandez is supported by the Spanish National Institute of Health, Carlos III Miguel Servet I Investigator Award (CP17/00206)

    Positive Evolutionary Selection of an HD Motif on Alzheimer Precursor Protein Orthologues Suggests a Functional Role

    Get PDF
    HD amino acid duplex has been found in the active center of many different enzymes. The dyad plays remarkably different roles in their catalytic processes that usually involve metal coordination. An HD motif is positioned directly on the amyloid beta fragment (Aβ) and on the carboxy-terminal region of the extracellular domain (CAED) of the human amyloid precursor protein (APP) and a taxonomically well defined group of APP orthologues (APPOs). In human Aβ HD is part of a presumed, RGD-like integrin-binding motif RHD; however, neither RHD nor RXD demonstrates reasonable conservation in APPOs. The sequences of CAEDs and the position of the HD are not particularly conserved either, yet we show with a novel statistical method using evolutionary modeling that the presence of HD on CAEDs cannot be the result of neutral evolutionary forces (p<0.0001). The motif is positively selected along the evolutionary process in the majority of APPOs, despite the fact that HD motif is underrepresented in the proteomes of all species of the animal kingdom. Position migration can be explained by high probability occurrence of multiple copies of HD on intermediate sequences, from which only one is kept by selective evolutionary forces, in a similar way as in the case of the “transcription binding site turnover.” CAED of all APP orthologues and homologues are predicted to bind metal ions including Amyloid-like protein 1 (APLP1) and Amyloid-like protein 2 (APLP2). Our results suggest that HDs on the CAEDs are most probably key components of metal-binding domains, which facilitate and/or regulate inter- or intra-molecular interactions in a metal ion-dependent or metal ion concentration-dependent manner. The involvement of naturally occurring mutations of HD (Tottori (D7N) and English (H6R) mutations) in early onset Alzheimer's disease gives additional support to our finding that HD has an evolutionary preserved function on APPOs

    Bioinorganic Chemistry of Alzheimer’s Disease

    Get PDF

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
    corecore