1,207 research outputs found

    Out-of-hospital cardiac arrest:Does rurality decrease chances of survival?

    Get PDF
    BACKGROUND: Geographical setting is seldomly taken into account when investigating out-of-hospital cardiac arrest (OHCA). It is a common notion that living in rural areas means a lower chance of fast and effective helpwhen suffering a time-critical event. This retrospective cohort study investigates this hypothesis and compares across healthcare-divided administrative regions. METHODS: We included only witnessed OHCAs to minimize the risk that outcome was predetermined by time to caller arrival and/or recognition. Arrests were divided into public and residential. Residential arrests were categorized according to population density of the area in which they occurred. We investigated incidence, EMS response time and 30-day survival according to area type and subsidiarily by healthcare-divided administrative region. RESULTS: The majority (71%) of 8,579 OHCAs were residential, and 53.2% of all arrests occurred in the most densely populated cell group amongst residential arrests. This group had a median EMS response time of six minutes, whereas the most sparsely populated group had a median of 10 minutes. Public arrests also had a median response time of six minutes. 30-day survival was highest in public arrests (38.5%, [95% CI 36.9;40.1]), and varied only slightly with no statistical significance between OHCAs in densely and sparsely populated areas from 14.8% (95% CI 14.4;15.2) and 13.4% (95% CI 12.2;14.7). CONCLUSION: Our study demonstrates that while EMS response times in Denmark are longer in the rural areas, there is no statistically significant decrease in survival compared to the most densely populated areas

    Hypothetical interventions on emergency ambulance and prehospital acetylsalicylic acid administration in myocardial infarction patients presenting without chest pain

    Get PDF
    BACKGROUND: Myocardial infarction (MI) patients presenting without chest pain are a diagnostic challenge. They receive suboptimal prehospital management and have high mortality. To elucidate potential benefits of improved management, we analysed expected outcome among non-chest pain MI patients if hypothetically they (1) received emergency ambulances/acetylsalicylic acid (ASA) as often as observed for chest pain patients, and (2) all received emergency ambulance/ASA. METHODS: We sampled calls to emergency and non-emergency medical services for patients hospitalized with MI within 24 h and categorized calls as chest pain/non-chest pain. Outcomes were 30-day mortality and a 1-year combined outcome of re-infarction, heart failure admission, and mortality. Targeted minimum loss-based estimation was used for all statistical analyses. RESULTS: Among 5418 calls regarding MI patients, 24% (1309) were recorded with non-chest pain. In total, 90% (3689/4109) of chest pain and 40% (525/1309) of non-chest pain patients received an emergency ambulance, and 73% (2668/3632) and 37% (192/518) of chest pain and non-chest pain patients received prehospital ASA. Providing ambulances to all non-chest pain patients was not associated with improved survival. Prehospital administration of ASA to all emergency ambulance transports of non-chest pain MI patients was expected to reduce 30-day mortality by 5.3% (CI 95%: [1.7%;9%]) from 12.8% to 7.4%. No significant reduction was found for the 1-year combined outcome (2.6% CI 95% [− 2.9%;8.1%]). In comparison, the observed 30-day mortality was 3% among ambulance-transported chest pain MI patients. CONCLUSIONS: Our study found large differences in the prehospital management of MI patients with and without chest pain. Improved prehospital ASA administration to non-chest pain MI patients could possibly reduce 30-day mortality, but long-term effects appear limited. Non-chest pain MI patients are difficult to identify prehospital and possible unintended effects of ASA might outweigh the potential benefits of improving the prehospital management. Future research should investigate ways to improve the prehospital recognition of MI in the absence of chest pain. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12872-022-03000-1

    Contacts With the Health Care System Before Out-of-Hospital Cardiac Arrest

    Get PDF
    BACKGROUND: It remains challenging to identify patients at risk of out‐of‐hospital cardiac arrest (OHCA). We aimed to examine health care contacts in patients before OHCA compared with the general population that did not experience an OHCA. METHODS AND RESULTS: Patients with OHCA with a presumed cardiac cause were identified from the Danish Cardiac Arrest Registry (2001–2014) and their health care contacts (general practitioner [GP]/hospital) were examined up to 1 year before OHCA. In a case‐control study (1:9), OHCA contacts were compared with an age‐ and sex‐matched background population. Separately, patients with OHCA were examined by the contact type (GP/hospital/both/no contact) within 2 weeks before OHCA. We included 28 955 patients with OHCA. The weekly percentages of patient contacts with GP the year before OHCA were constant (25%) until 1 week before OHCA when they markedly increased (42%). Weekly percentages of patient contacts with hospitals the year before OHCA gradually increased during the last 6 months (3.5%–6.6%), peaking at the second week (6.8%) before OHCA; mostly attributable to cardiovascular diseases (21%). In comparison, there were fewer weekly contacts among controls with 13% for GP and 2% for hospital contacts (P<0.001). Within 2 weeks before OHCA, 57.8% of patients with OHCA had a health care contact, and these patients had more contacts with GP (odds ratio [OR], 3.17; 95% CI, 3.09–3.26) and hospital (OR, 2.32; 95% CI, 2.21–2.43) compared with controls. CONCLUSIONS: The health care contacts of patients with OHCA nearly doubled leading up to the OHCA event, with more than half of patients having health care contacts within 2 weeks before arrest. This could have implications for future preventive strategies

    Sex difference and intra-operative tidal volume: Insights from the LAS VEGAS study

    Get PDF
    BACKGROUND: One key element of lung-protective ventilation is the use of a low tidal volume (VT). A sex difference in use of low tidal volume ventilation (LTVV) has been described in critically ill ICU patients.OBJECTIVES: The aim of this study was to determine whether a sex difference in use of LTVV also exists in operating room patients, and if present what factors drive this difference.DESIGN, PATIENTS AND SETTING: This is a posthoc analysis of LAS VEGAS, a 1-week worldwide observational study in adults requiring intra-operative ventilation during general anaesthesia for surgery in 146 hospitals in 29 countries.MAIN OUTCOME MEASURES: Women and men were compared with respect to use of LTVV, defined as VT of 8 ml kg-1 or less predicted bodyweight (PBW). A VT was deemed 'default' if the set VT was a round number. A mediation analysis assessed which factors may explain the sex difference in use of LTVV during intra-operative ventilation.RESULTS: This analysis includes 9864 patients, of whom 5425 (55%) were women. A default VT was often set, both in women and men; mode VT was 500 ml. Median [IQR] VT was higher in women than in men (8.6 [7.7 to 9.6] vs. 7.6 [6.8 to 8.4] ml kg-1 PBW, P &lt; 0.001). Compared with men, women were twice as likely not to receive LTVV [68.8 vs. 36.0%; relative risk ratio 2.1 (95% CI 1.9 to 2.1), P &lt; 0.001]. In the mediation analysis, patients' height and actual body weight (ABW) explained 81 and 18% of the sex difference in use of LTVV, respectively; it was not explained by the use of a default VT.CONCLUSION: In this worldwide cohort of patients receiving intra-operative ventilation during general anaesthesia for surgery, women received a higher VT than men during intra-operative ventilation. The risk for a female not to receive LTVV during surgery was double that of males. Height and ABW were the two mediators of the sex difference in use of LTVV.TRIAL REGISTRATION: The study was registered at Clinicaltrials.gov, NCT01601223

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
    corecore