415 research outputs found

    The control of catalytic performance of rutile-type Sn/V/Nb/Sb mixed oxides, catalysts for propane ammoxidation to acrylonitrile

    Get PDF
    This paper describes the effect of the composition of rutile-type Sn/V/Nb/Sb mixed oxides catalysts on the catalytic performance in the gas-phase ammoxidation of propane to acrylonitrile. The variation in the atomic ratio between components in catalysts is the key for the control of activity and selectivity. In samples with atomic composition Sn/V/Nb/Sb 1/0.2/1/x (0 x 5) and 1/0.2/y/3 (0 y 3) several compounds formed, i.e., SnO2, Sb/Nbmixed oxide, Sb6O13 and non-stoichiometric rutile-type V/Nb/Sb/O; the latter segregated preferentially at the surface of the catalyst. Tin oxide provided the rutile matrix for the dispersion of the mixed oxides. The main role of Sb was shown to generate mixed oxides containing specific sites for the allylic ammoxidation of propylene intermediately formed. The presence of Nb enhanced the activity and selectivity of these sites

    Exploration of human serum lipoprotein supramolecular phospholipids using statistical heterospectroscopy in n-Dimensions (SHY-n): Identification of potential cardiovascular risk biomarkers related to SARS-CoV-2 infection

    Get PDF
    SARS-CoV-2 infection causes a significant reduction in lipoprotein-bound serum phospholipids give rise to supramolecular phospholipid composite (SPC) signals observed in diffusion and relaxation edited 1H NMR spectra. To characterize the chemical structural components and compartmental location of SPC and to understand further its possible diagnostic properties, we applied a Statistical HeterospectroscopY in n-dimensions (SHY-n) approach. This involved statistically linking a series of orthogonal measurements made on the same samples, using independent analytical techniques and instruments, to identify the major individual phospholipid components giving rise to the SPC signals. Thus, an integrated model for SARS-CoV-2 positive and control adults is presented that relates three identified diagnostic subregions of the SPC signal envelope (SPC1, SPC2, and SPC3) generated using diffusion and relaxation edited (DIRE) NMR spectroscopy to lipoprotein and lipid measurements obtained by in vitro diagnostic NMR spectroscopy and ultrahigh-performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS). The SPC signals were then correlated sequentially with (a) total phospholipids in lipoprotein subfractions; (b) apolipoproteins B100, A1, and A2 in different lipoproteins and subcompartments; and (c) MS-measured total serum phosphatidylcholines present in the NMR detection range (i.e., PCs: 16.0,18.2; 18.0,18.1; 18.2,18.2; 16.0,18.1; 16.0,20.4; 18.0,18.2; 18.1,18.2), lysophosphatidylcholines (LPCs: 16.0 and 18.2), and sphingomyelin (SM 22.1). The SPC3/SPC2 ratio correlated strongly (r = 0.86) with the apolipoprotein B100/A1 ratio, a well-established marker of cardiovascular disease risk that is markedly elevated during acute SARS-CoV-2 infection. These data indicate the considerable potential of using a serum SPC measurement as a metric of cardiovascular risk based on a single NMR experiment. This is of specific interest in relation to understanding the potential for increased cardiovascular risk in COVID-19 patients and risk persistence in post-acute COVID-19 syndrome (PACS)

    Search for W' bosons decaying to an electron and a neutrino with the D0 detector

    Get PDF
    This Letter describes the search for a new heavy charged gauge boson W' decaying into an electron and a neutrino. The data were collected with the D0 detector at the Fermilab Tevatron proton-antiproton Collider at a center-of-mass energy of 1.96 TeV, and correspond to an integrated luminosity of about 1 inverse femtobarn. Lacking any significant excess in the data in comparison with known processes, an upper limit is set on the production cross section times branching fraction, and a W' boson with mass below 1.00 TeV can be excluded at the 95% C.L., assuming standard-model-like couplings to fermions. This result significantly improves upon previous limits, and is the most stringent to date.Comment: submitted to Phys. Rev. Let

    Measurement of the ratios of the Z/G* + >= n jet production cross sections to the total inclusive Z/G* cross section in ppbar collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We present a study of events with Z bosons and jets produced at the Fermilab Tevatron Collider in ppbar collisions at a center of mass energy of 1.96 TeV. The data sample consists of nearly 14,000 Z/G* -> e+e- candidates corresponding to the integrated luminosity of 0.4 fb-1 collected using the D0 detector. Ratios of the Z/G* + >= n jet cross sections to the total inclusive Z/G* cross section have been measured for n = 1 to 4 jet events. Our measurements are found to be in good agreement with a next-to-leading order QCD calculation and with a tree-level QCD prediction with parton shower simulation and hadronization.Comment: 7 pages, 2 figures, slightly modified, submitted to Phys. Lett.

    Search for a scalar or vector particle decaying into Zgamma in ppbar collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We present a search for a narrow scalar or vector resonance decaying into Zgamma with a subsequent Z decay into a pair of electrons or muons. The data for this search were collected with the D0 detector at the Fermilab Tevatron ppbar collider at a center of mass energy sqrt(s) = 1.96 TeV. Using 1.1 (1.0) fb-1 of data, we observe 49 (50) candidate events in the electron (muon) channel, in good agreement with the standard model prediction. From the combination of both channels, we derive 95% C.L. upper limits on the cross section times branching fraction (sigma x B) into Zgamma. These limits range from 0.19 (0.20) pb for a scalar (vector) resonance mass of 600 GeV/c^2 to 2.5 (3.1) pb for a mass of 140 GeV/c^2.Comment: Published by Phys. Lett.

    Thermal transport in one-dimensional spin gap systems

    Full text link
    We study thermal transport in one dimensional spin systems both in the presence and absence of impurities. In the absence of disorder, all these spin systems display a temperature dependent Drude peak in the thermal conductivity. In gapless systems, the low temperature Drude weight is proportional to temperature and to the central charge which characterizes the conformal field theory that describes the system at low energies. On the other hand, the low temperature Drude weight of spin gap systems shows an activated behavior modulated by a power law. For temperatures higher than the spin gap, one recovers the linear T behavior akin to gapless systems. For temperatures larger than the exchange coupling, the Drude weight decays as 1/T^2. We argue that this behavior is a generic feature of quasi one dimensional spin gap systems with a relativistic-like low energy dispersion. We also consider the effect of a magnetic field on the Drude weight with emphasis on the commensurate-incommensurate transition induced by it. We then study the effect of nonmagnetic impurities on the thermal conductivity of the dimerized XY chain and the spin-1/2 two leg ladder. Impurities destroy the Drude peak and the thermal conductivity exhibits a purely activated behavior at low temperature, with an activation gap renormalized by disorder. The relevance of these results for experiments is briefly discussed.Comment: 13 pages, 6 eps figures, RevTeX

    Quantification of three macrolide antibiotics in pharmaceutical lots by HPLC: Development, validation and application to a simultaneous separation

    Get PDF
    A new validated high performance liquid chromatographic (HPLC) method with rapid analysis time and high efficiency, for the analysis of erythromycin, azithromycin and spiramycin, under isocratic conditions with ODB RP18 as a stationary phase is described. Using an eluent composed of acetonitrile –2-methyl-2-propanol –hydrogenphosphate buffer, pH 6.5, with 1.5% triethylamine (33:7: up to 100, v/v/v), delivered at a flow-rate of 1.0 mL min-1. Ultra Violet (UV) detection is performed at 210 nm. The selectivity is satisfactory enough and no problematic interfering peaks are observed. The procedure is quantitatively characterized and repeatability, linearity, detection and quantification limits are very satisfactory. The method is applied successfully for the assay of the studied drugs in pharmaceutical dosage forms as tablets and powder for oral suspension. Recovery experiments revealed recovery of 97.13–100.28%
    corecore