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1 What is Uncertainty?

The term uncertainty can have many different meanings. The Chambers Dic-
tionary (1998 edition) defines “uncertain” as not definitely known or decided;
subject to doubt or question. [60] quote six different definitions for “uncer-
tainty” from Webster’s Dictionary. In the context of practical applications in
multicriteria decision analysis, however, the definition given by [108] would ap-
pear to be particularly appropriate. With minor editing, this is as follows:

Uncertainty implies that in a certain situation a person does
not possess the information which quantitatively and qualitatively
is appropriate to describe, prescribe or predict deterministically and
numerically a system, its behaviour or other characteristics.

At a most fundamental level, uncertainty relates to a state of the human
mind, i.e. lack of complete knowledge about something. Many writers also use
the term “risk”, although the definition of the term varies widely. Some earlier
work tended to apply the term “risk” to situations in which probabilities on
outcomes are (to a large extent) known objectively (cf. [38], p. 389, and [75] for
some reference to this view). More recently, the concept of risk has come to refer
primarily to the desirability or otherwise of uncertain outcomes, in addition to
simple lack of knowledge. Thus, for example, [33] refers to risk as “a chance
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of something bad happening”, and in fact separates uncertainty (alternatives
with several possible outcome values) from the fundamental concept of risk as
a bad outcome. [86] state that “judgements about riskiness depend on both the
probability and the magnitude of adverse effects” (our emphasis), while [53] also
discuss the psychological aspects of establishing a preference order on risks.

For the most part in this chapter, we shall make use of the value-neutral
term “uncertainty”, referring to “risk” only when direct preference orderings of
the uncertainty per se are relevant (for example, in Section 5). It is interesting
to note in passing that while the thrust of the present discussion is to give
consideration to the effects of uncertainty on MCDA, there has also been work
on applying multicriteria concepts to the measurement of risk for other purposes,
as for example in credit risk assessment ([27], who make use of a rough sets
approach).

A number of authors (e.g. [34], [108]) have attempted to categorize types
or sources of uncertainty in the context of decision making. [34], for example,
identifies no less than 10 different sources of uncertainty which may arise in
model building for decision aid, which he classifies into three groups referring
broadly to uncertainties in the modelling (or problem structuring) process, in
the use of models for exploring trends and options, and in interpreting results.
The common theme underlying such categorizations, as well as those of other
authors, such as [36] and [68], is the need at very least distinguish between inter-
nal uncertainty, relating to the process of problem structuring and analysis, and
external uncertainty, regarding the nature of the environment and thereby the
consequences of a particular course of action which may be outside of the control
of the decision maker. Let us briefly examine each of these broad categories of
uncertainty.

Internal uncertainty This refers to both the structure of the model adopted
and the judgmental inputs required by those models, and can take on many
forms, some of which are resolvable and others which are not. Resolvable un-
certainties relate to imprecision or ambiguity of meaning – for example, what
exactly may be meant by a criterion such as “quality of life”? Less easily re-
solvable problems may arise when different stakeholders generate different sets
of criteria which are not easily reconciled; or perceive alternatives in such dif-
ferent ways that they differ fundamentally on how they contribute to the same
criterion.

Imprecisions in human judgments, whether these relate to specifications of
preferences or values (for example importance weights in many models), or to
assessments of consequences of actions, have under certain circumstances been
modelled by fuzzy set (see, for example, Chapters 4 and 5 of [60]) and related
approaches (such as the use of rough sets as described by [41, 40, 42]. From the
point of view of practical decision aid, such models of imprecision add complexity
to an already complex process, and the result may often be a loss of transparency
to the decision maker, contrary to the ethos of MCDA. For this reason, the view
espoused here is that internal uncertainties should ideally be resolved as far as
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is possible by better structuring of the problem (cf. [11], Chapter 3) and/or
by appropriate sensitivity and robustness analysis where not resolvable, which
will further be discussed in Section 2. The evidential reasoning (ER) approach
described by [101], to which we shall refer again at the end of Section 3, does
provide a more formal model for integrating imprecise preference information
that cannot fully be resolved.

External uncertainty This refers to lack of knowledge about the conse-
quences of a particular choice. [36] and [34] both recognize a further distinction
between uncertainty about the environment and uncertainty about related de-
cision areas, as described below.

• Uncertainty about the environment represents concern about issues outside
the control of the decision maker. Such uncertainty may be a consequence
of a lack of understanding or knowledge (in this sense it is similar to uncer-
tainty about related decision areas) or it may derive from the randomness
inherent in processes (for example the chance of equipment failure, or the
level of the stock market). For example, the success of an investment in
new production facilities may rest on the size of the potential market,
which may depend in part on the price at which the good will be sold,
which itself depends on factors such as the cost of raw materials and labour
costs. A decision about whether or not to invest in the new facilities must
take all of these factors into account. This kind of uncertainty may be
best handled by responses of a technical nature such as market research,
or forecasting.

• Uncertainty about related decision areas reflects concern about how the
decision under consideration relates to other, interconnected decisions.
For example, suppose a company which supplies components to computer
manufacturers is looking to invest in a management information system.
They would like their system to be able to communicate directly with that
of their principal customers; however, at least one of these customers may
be planning to install a new system in the near future. This customer’s de-
cision could preclude certain of the options open to the supplier and would
certainly have an impact on the attractiveness of options. The appropri-
ate response to uncertainty of this kind may be to expand the decision
area to incorporate interconnected decisions, or possibly to collaborate or
negotiate with other decision makers.

Under many circumstances, both internal and external uncertainties can
be treated in much the same manner, for example by appropriate sensitivity
analyses post hoc. In other words, the approach might be to make use of a crisp
deterministic MCDA methodology, and to subject the results and conclusions
to extensive sensitivity studies. Indeed, we would assert that such sensitivity
studies should routinely be part of any MCDA application, and some approaches
are discussed in Section 2.
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Where uncertainties are of sufficient magnitude and importance to be mod-
elled explicitly as part of the MCDA methodology, however, the modelling ap-
proaches for internal and external uncertainties may often become qualitatively
different in nature. It seems, therefore, that the treatment of the two types
of uncertainty should preferably be discussed in separate papers or chapters.
In order to provide focus for the present paper, our attention will be focussed
primarily, apart from Section 2, on consideration of the external uncertainties
as defined above. Without in any way minimizing the importance of dealing
with internal uncertainties, our choice of the problem of external uncertainties
as the theme for this chapter is in part due to the present authors’ practical
experience, which suggests that it is the external uncertainties which are of-
ten of sufficient magnitude and importance to require more explicit modelling.
The present chapter complements in many ways the survey paper by [31] which
does include more on internal uncertainties and the behavioural models of un-
certainty and risk perception. (It should perhaps be acknowledged that there
is also some inevitable overlap between [31] and the current chapter, but the
thrusts are still distinct.)

Admittedly, the boundary between external uncertainty and imprecision is,
well, fuzzy! To this extent, some of the material in this chapter is appropriate
to internal uncertainties as well, while some methods formulated to deal with
human imprecision might equally well be useful in dealing with external un-
certainties. We leave it to the reader to decide where this may be true. We
do not attempt here a comprehensive review of literature related primarily to
internal uncertainties, but the interested reader may wish to consult some of
the following references:

• Fuzzy set approaches: [60]; [22, 21]; [103]; some discussion may also be
found in [31];

• Rough set approaches: [41, 40, 42, 43].

Our approach is pragmatic in intention, motivated by practical needs of real-
world decision analysis. In particular, the fundamental philosophical point of
departure is a belief in the over-riding need for transparency in any MCDA:
it is vitally and critically important that any approaches to MCDA are fully
understandable to all participants in the process. Elegant mathematical models
which are inaccessible to such participants are of very little practical value.

Within the context of the opening discussion, let us now define a notational
framework within which to consider MCDA under uncertainty (primarily “ex-
ternal uncertainty” as defined earlier). Let X be the set of actions or decision
alternatives. When there is no uncertainty about the outcomes, there exists a
one-to-one correspondence between elements of X and consequences in terms of
the criteria, and X may written as the product space

∏n
i=1Xi, where Xi is the

set of evaluations with respect to criterion i. In other words, any x ∈ X may be
viewed as an n-dimensional vector with elements xi ∈ Xi, where xi represents
the evaluation of x with respect to the criterion i.
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Under uncertainty, however, the one-to-one correspondence between actions
and evaluations or consequences breaks down. It may be possible to postulate or
to conceptualize an ultimate set of consequences Z1(x), . . . , Zn(x) corresponding
to each of the criteria, but at decision time there will still exist many possible
values for each Zi(x). For ease of notation, we shall use Z(x) to indicate the
vector of Zi(x) values.

In some cases, it may be possible and useful to structure Zi(x) (or Z(x))
in the form Zi(x, ξ) (or Z(x, ξ)), where ξ ∈ Ξ fully characterizes the external
conditions, sometimes termed the “states of nature”, and Ξ represents the set
of all possible states of nature. The assumption is then that once ξ (the state
of nature) is established or revealed, then the consequences in terms of each
criterion will also be known. We observe, however, that even Ξ might not be fully
known or understood at decision time, and that Ξ could possibly depend upon
the action x (although, for ease of notation, we shall not show this explicitly).

The question to be addressed in this chapter is that of constructing some
form of (possibly partial) preference ordering on X, when the consequences
are incompletely known or understood in the sense described in the previous
paragraph.

As indicated earlier, one approach may be initially to ignore the uncer-
tainty, and to conduct the analysis on the basis of a nominal set of consequences
z1, z2, . . . , zn chosen to be representative of the possible Zi(x), followed by ex-
tensive sensitivity analysis which takes into account the range of uncertainty
in each Zi(x). Under many circumstances this may be adequate. Care needs
to be exercised in undertaking sensitivity analyses, however, as simple “one-at-
a-time” variations in unknown parameter values may fail to identify effects of
higher order interactions. Some of the complications inherent in undertaking
properly validated sensitivity analyses, and suggestions as to how these may be
addressed, are discussed by [82], [80] and [85]. Section 2 describes some practical
approaches for managing such sensitivity studies.

In the remainder of this chapter, the focus will be on situations in which
the ranges of uncertainty are too substantial to be handled purely by sensitiv-
ity analysis. In Section 3 we discuss the use of probability models and related
methods to represent the uncertainties formally, emphasizing particularly the
comprehensively axiomatized approach of multiattribute utility theory. The po-
tential for relaxing the needs to specify complete utility functions are addressed
in Section 4, which leads naturally to the use of pairwise comparison models
for MCDA. In many practical situations, decision maker preferences for various
types of risk (magnitude and impact of the uncertainties) may be modelled by
defining explicit risk-avoidance criteria, and these are discussed in Section 5. Fi-
nally, links between MCDA and scenario planning for dealing with uncertainties
are presented in Section 6, before concluding with some general implications for
practice.

5



2 Sensitivity analysis and related methods

For the purposes of this section, we postulate the existence of an “evaluation
function” Ψ(Z(x, ξ), φ), which indicates a degree of satisfaction associated with
the outome of the decision. In this formulation:

• The function Ψ(Z(x, ξ), φ) could be a utility, a distance from a desired
outcome, etc.;

• The factors ξ and φ represent respectively the external influences (in-
completely known, and outside of the decision makers’ control) on con-
sequences of the decision, and the internal uncertainties as to how these
consequences should be evaluated in terms of decision maker goals (e.g.
importance weights, tradeoffs).

The aim of sensitivity analysis is typically to identify potentially optimal so-
lutions amongst uncertainty ranges in ξ (external) and φ (internal). Sensitivity
analysis is aimed at providing insights into:

1. whether the outcome of the decision model changes as ξ and/or φ take on
different values within the stated bounds. For simplicity of presentation
here, we shall assume a choice problematique i.e. the selection of a single
preferred alternative;

2. the values of ξ and φ for which each alternative may be deemed to be the
best.

Sensitivity analysis is most appropriately applied when the uncertainties are
essentially subjective in nature, i.e. either internal uncertainties (φ) or situa-
tions in which the state is already determined (not subject to future random
fluctuations) but still unknown. For ease of presentation we shall denote the
combination of subjective uncertainties in state (typically state probabilities)
and internal uncertainties by ψ = (ξ, φ), and assume that there are no other ex-
ternal random influences. In this case, we shall express the evaluation function
simply as Ψ(Z(x), ψ).

If the decision maker has provided a precise specification of elements of ψ,
sensitivity analysis involves varying ψ away from these specified values and ex-
amining the impact on results. This can be done in an ad hoc fashion, although
a preferable approach is to use one of the many well-known methods for system-
atically exploring the space of possible preference parameters (see the review in
[51]). Many of the so-called “interactive” or “progressive articulation of prefer-
ences” methods (e.g. [91]) may also be useful as tools for sensitivity analysis.

If no precise specification of ψ can be given, alternative forms of sensitivity
analysis are provided by inverse-preference and preference disaggregation mod-
els. (Interval-based decision models [74] may also be used, but fall outside the
scope of the aims of present section.) Inverse preference models typically work
by providing information about the volume and types of values for ψ (if any)
that would lead to the selection of each alternative. Effectively, instead of ask-
ing ‘which alternative is best given a particular ψ?’, one asks for example ‘what
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ranges of or possible values for ψ would result in a particular alternative being
considered the best?’. Partial or total ignorance about possible values for ψ is
incorporated through appropriate probability distributions defined over these
inputs.

One such inverse-preference method is stochastic multi-criteria acceptabil-
ity analysis (SMAA). The original SMAA method [65] analysed the combina-
tions of attribute weights (internal uncertainties) that result in each of a set of
prospective alternatives being selected when using an additive utility function.
Subsequently a number of variants have been developed. These differ in terms
of the preference model used and the type of information that is imprecisely
known, but are all based upon Monte Carlo simulation from distributions which
indicate the extent of the uncertainty in ψ. For example, SMAA variants are
available for value functions [65, 63], outranking [49], reference point methods
[66, 28], and prospect theory [64] methods. Several probabilitistic AHP models
[67, 7] also use Monte Carlo simulation to randomly generate pairwise evalua-
tions from the distributions specified by decision makers, in similar fashion to
SMAA.

For illustration, the process described here relates to uncertain importance
weight information, but can readily be extended to other subjective uncertain-
ties. SMAA in this context is based on simulating a large number of random
weight vectors from a probability distribution defined over the weight space and
observing the proportion and distinguishing features of weight vectors which
result in each alternative obtaining a particular rank r (usually the “best” rank,
r = 1). Other uncertain evaluations, e.g. partial value assessments in value
function methods, are also conventionally treated in SMAA using probability
distributions, with each simulation run drawing values at random from these
distributions. Adapting SMAA models to use other uncertainty formats, how-
ever, is generally straightforward [29]. In any case, in order to illustrate the
process for uncertain weights, let the set of (randomly generated) weight vec-
tors that result in alternative ai obtaining rank r be denoted by W r

i . SMAA
is based on an analysis of these sets of weights using a number of descriptive
measures, the most important of which are:

Acceptability indices The rank-r acceptability index bri measures the pro-
portion of all simulation runs i.e. weight vectors, that make alternative ai
obtain rank r. A cumulative form of the acceptability index called the
k-best ranks acceptability index is defined as Bki =

∑k
r=1 b

r
i and mea-

sures the proportion of all weight vectors for which alternative ai appears
anywhere in the best k ranks.

Central weight vectors The central weight vector wc
i is defined as the center

of gravity of the favourable weight space W 1
i . It gives a concise description

of the “typical” preferences supporting the selection of a particular alter-
native ai, and in practice is computed from the empirical (element-wise)
averages of all weight vectors supporting the selection of ai as the best
alternative.
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Ranges on favourable weights These simply indicate the minima and max-
ima of the observed favourable weights supporting alternative ai.

Preference disaggregation models also aim to provide information on con-
ditions under which one or more alternatives may be preferred to others, par-
ticularly with regard to internal uncertainty. These models typically use a set
of global preference statements to infer the parameters of a preference model
before applying that model to a larger set of alternatives to arrive at a choice
or ranking or classification. In the original UTA method (see [52]), the break-
points of piecewise linear marginal value functions are estimated by a linear
program whose main elements are the constraints U(a) > U(b) ⇐⇒ a � b
and U(a) = U(b) ⇐⇒ a ∼ b, along with some technical constraints (e.g. im-
posing montonicity and a zero-point). Of course, more than one set of value
functions may be compatible with the specified global preference statements.
The robust ordinal regression approach [45] addresses this issue by providing
“necessary” preference relations indicating support from all compatible value
functions, and “possible” preference relations indicating support from at least
one compatible value function. The necessary and possible rankings are again
found using a linear programing formulation, in which a key role is played by
the sign of a deviational variable ε. An alternative a is “possibly” preferred to
b; if max ε > 0 subject to two constraints U(a) ≥ U(b) and U(a) ≥ U(b) + ε
if x � y. Then, a is “necessarily” preferred to b; if max ε ≤ 0 subject to two
constraints U(b) ≥ U(a) + ε and U(a) ≥ U(b) + ε if x � y.

In addition, preference statements can be in the form of ranking preference
differences as well as alternatives, and value functions are not constrained to be
piecewise linear. A number of extensions of the basic robust ordinal regression
approach have been made to accommodate sorting problems [44], nonadditive
functions [4], and outranking methods [46].

This section on sensitivity analysis has focussed on subjective and partic-
ularly internal uncertainties. We shall now, for the remainder of the chapter
focus on external uncertainties.

3 Probabilistic Models and Expected Utility

The most thoroughly axiomatized mathematical treatment of uncertainty is
that of probability theory, and possibly extensions such as Dempster-Shafer
theory [87]. The application of probability concepts requires the specification
of a (multivariate) probability distribution on Z(x) for each action x, so that in
effect the decision requires a comparison of probability distributions (sometimes
called “lotteries” in this context). Let Px(z) denote the probability distribution
function on Z(x), i.e.:

Px(z) = Pr[Z1(x) ≤ z1, Z2(x) ≤ z2, . . . , Zn(x) ≤ zn].

Define P xi (zi) as the corresponding marginal probability distribution function
for Zi(x).
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Where uncertainties are structured in terms of “states of nature”, the prob-
ability distributions may be defined on the ξ (rather than on the Z(x) directly).
In some situations, the probability distribution on ξ may be independent of
the action which would make the application of probability models much more
tractable, but this will not necessarily always be the case.

A possibility at this stage is to construct a deterministic MCDA model based
only on expectations, and to subject the results to some form of (possibly inter-
active) sensitivity analysis, such as described in the previous section, guided by
the known distributional properties. Examples of this are in the PROTRADE
method described by [38] Chapter 7, dealing with an interactive method for
multiobjective mathematical programming problems, and in the stochastic ex-
tensions to outranking proposed by [71].

Although simulations reported in [30] suggest that simple expectation models
can often return similar results to models taking the full ranges of outcomes
into account, this conclusion clearly cannot be generalized to all situations.
Multiattribute utility theory (MAUT) extends the concept of expectation to
include explicit modelling of risk preferences, i.e. of the magnitudes of dispersion
that may occur. MAUT is discussed by Dyer in Chapter dyerchapter of this
volume, and also more comprehensively in the now classic texts of [56] and [100].
In essence, MAUT seeks to construct a “utility function” U(Z), such that for
any two actions x and y in X, x % y if and only if E[U(Z(x))] ≥ E[U(Z(y))],
where expectations are taken with respect to the probability distributions on
Z(x) and on Z(y) respectively.

Practically, the construction of the global utility function U(Z) starts with
the construction of partial or marginal utility functions individually for each
attribute, say ui(Zi), satisfying the expected utility hypothesis for variations in
Zi only. The axioms underlying the existence of such marginal utility functions
and the methods for their construction are well-known from univariate decision
analysis (see, for example, Chapter dyerchapter , or [39], check Chapter
6). It is well-established that these axioms are not descriptively valid, in the
sense that decision makers do systematically violate them (see, for example,
the various paradoxes described by [55], or in the text of [9]). Attempts have
been made to extend the utility models to account for observed behaviour (see,
for example, [77] for a review of such extensions in the multicriteria context).
Nevertheless, as we have argued elsewhere (e.g.,[11], Section 4.3.1), descriptive
failures do not lessen the value of the simpler axiomatically based theory of
MAUT as a coherent discipline within which to construct preferences in a simple,
transparent and yet defensible manner.

The real challenge relates to the aggregation of the ui(Zi) into a U(Z) still
satisfying the expected utility hypothesis for the multivariate outcomes. The
two simplest forms of aggregation are the additive and multiplicative, which we
shall now briefly review (although a full description can be found in Chapter
dyerchapter.

9



Additive aggregation. In this case, we define:

U(Z) =

n∑
i=1

kiui(Zi). (1)

This model is only justifiable if the criteria are additively independent,
i.e. if preferences between the multivariate lotteries depend only on the
marginal probability distributions. That this is not an entirely trivial
assumption may be seen by considering two-dimensional lotteries (n = 2)
in which there are only two possible outcomes on each criterion, denoted
by z0i and z1i for i = 1, 2. Suppose that z1i � z0i . Then without loss
of generality, the partial utility functions can be standardized such that
u1(z01) = u2(z02) = 0 and u1(z11) = u2(z12) = 1. Consider then a choice
between two lotteries defined as follows:

• The lottery giving equal chances on (z01 ; z02) and (z11 ; z12); and

• The lottery giving equal chances on (z01 ; z12) and (z11 ; z02).

We note that both lotteries give the same marginal distributions on each
Zi, i.e. equal chances on each of z0i and on z1i for each i. It is easily verified
that with additive aggregation defined by (1), both of these lotteries yield
an expected utility of (k1 + k2)/2. The additive model thus suggests
that the decision maker should always be indifferent between these two
lotteries. There seems, however, to be no compelling axiomatic reason for
forcing indifference between the above two options. Where there is some
measure of compensation between the criteria (in the sense that good
performance on one can compensate for poorer outcomes on the other),
the second option may be preferred as it ensures that one always gets some
benefit (a form of multivariate risk aversion). On the other hand, if there
is need to ensure equity between the criteria (if they represent benefits to
conflicting social groups, for example), then the first lottery (in which loss
or gain is always shared equally) may be preferred.

Multiplicative aggregation. Now we define U(Z) such that:

1 + kU(Z) =

n∏
i=1

[1 + kkiui(Zi)] (2)

where the multivariate risk aversion k parameter satisfies:

1 + k =

n∏
i=1

[1 + kki] (3)

Use of the multiplicative model requires that the condition of mutual utility
independence be satisfied. A subset of criteria, say C ⊂ {1, 2, . . . , n} is
said to be utility independent of its complement C̄ = {1, 2, . . . , n} \ C,
if preferences for lotteries involving only Zi for i ∈ C for fixed values of
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Zi for i ∈ C̄ are independent of these fixed values. The criteria are said
to be mutually utility independent if every subset of the criteria is utility
independent of its complement.

In principle, however, there are no compelling reasons why criteria should
necessarily be mutually utility independent, and in fact it can be difficult in
practice to verify that the condition holds. Good problem structuring for MCDA
would seek to ensure preferential independence of some form between criteria
(for example, such that trade-offs between pairs of criteria are independent
of outcomes on other criteria), but mutual utility independence is a stronger
assumption and more elusive concept than simple preferential independence.

Models based on weaker preference assumptions have been developed, such
as the multilinear model given by:

U(Z) =

n∑
i=1

kiui(Zi) +

n∑
i=1

∑
i<j≤n

kijui(Zi)uj(Zj)

+ . . .+ k12...nu1(Z1)u2(Z2) . . . un(Zn) (4)

The large number of parameters which have to fitted to decision maker pref-
erences is prohibitive in most real world applications. Even the multiplicative
model is far from trivial to apply in practice. Its construction involves the
following steps:

• Assessment of the partial utilities ui(Zi) by standard single attribute lot-
tery procedures.

• Parameter estimation: The multiplicative model includes n+1 parameters
which have in principle to be estimated, although in the light of (3), only n
independent parameters need estimation. Estimates thus require at least
n preference statements concerning hypothetical choices to be made by
the decision maker. Some of these can be based on deterministic trade-
off assessments, but at least one of the hypothetical choices must involve
consideration of preferences between multivariate lotteries.

In exploring the literature, it is difficult to find many reported applications
even of the multiplicative model, let alone the multilinear model. Some of the
practical complications of properly implementing these models are illustrated
by [84] and [104].

Such difficulties of implementation raise the question as to how sensitive
the results of analysis may be to the use of the additive model (1) instead
of the more theoretically justifiable aggregation models given by (2) or (4).
We have seen earlier that situations can be constructed in which the additive
model may generate misleading results. But how serious is this in practice?
Construction of the additive model requires much less demanding inputs from
the decision maker, and it may be that the resultant robustness or stability of
the model will compensate for biases introduced by use of the simpler model.
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In [88] a number of simulation studies are reported in which the effects are
studied of using the additive aggregation model when “true preferences” follow
a multiplicative aggregation model. Details may be found in the cited reference,
but in essence it appeared that the errors introduced by using the additive model
were generally small for realistic ranges of problem settings. The errors were in
any case substantially smaller than those introduced by incorrect modelling of
the partial utility functions (such as by over-linearization of the partial functions
which appears to be a frequent but erroneous simplification). Related work
([89]) has also demonstrated that more fundamental violations of preferential
independence may also introduce substantial errors.

Concerns about the validity of the fundamental axiomatic foundations of
utility theory, even for single criterion problems, have led other writers to formu-
late alternative models to circumvent these. From the standpoint of prescriptive
decision aid, a particular concern is that several utility techniques for eliciting
the marginal value functions ui(zi) (e.g. certainty-equivalence and probability-
equivalence methods) assume that the axioms of EUT hold during the elicitation
process [16], even though these axioms are known not to be descriptively valid.
Utility function assessments based on elicited responses from decision makers
who do not follow EUT may thus be systematically biased. Importantly, this
concern for the validity of estimated marginal utility functions relates to ob-
served or descriptive behaviour, and is thus independent of any debate around
the desirability of the axioms in a normative decision aiding sense. [96] propose
an alternative assessment method – the gamble trade-off method – that does
not depend on the actual probability values, and is thus robust to the kinds of
probability transformations that decision makers often use. These procedures
are extended in [1, 15] to allow for the assessment of both non-expected util-
ity and probability weighting functions, and in [3] to allow the full assessment
of the prospect theory utility function i.e. one that is defined over the whole
domain of losses and gains. A number of authors [77, 105, 14] have reviewed
generalizations to utility theory and developed procedures for the decompo-
sition of multi-attribute non-expected utility functions, while others (e.g. [13]
and [102]) relax the demands of probability theory by invoking concepts from
Dempster-Shafer theory of evidence.

Unfortunately, these generalizations tend often to make the models even
more complex and thus less transparent to decision makers, further aggravating
difficulties of implementation. Our overall conclusion is thus that in the practical
application of expected utility theory to decision making under uncertainty, the
use of the additive aggregation model is likely to be adequate in a many settings.
The imprecisions and uncertainties involved in constructing the partial utilities,
which need in any case to be addressed by careful sensitivity analysis, are likely
to outweigh any distinctions between the additive and multiplicative models.
In fact, given that marginal utility functions based on preferences between hy-
pothetical lotteries may generally not differ markedly from deterministic value
functions based on relative strengths of preference (e.g. [100], Chapter 10), we
conjecture that even the first step of the model construction could be based on
the latter (e.g. by use of the SMART methodology, [100], Section 8.2). Some
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recent evidence in support of this view has been provided by [2]. Nevertheless,
situations may arise when simplified utility models are simply inadequate, and
some of the other models discussed below may need to be considered.

4 Pairwise Comparisons

As indicated in the previous section, the requirements of fitting a complete
utility function can be extremely demanding both for the decision maker (in
providing the necessary judgemental inputs) and for the analysts (in identifying
complete multivariate distributions). We have seen how the assumption of a
simple additive model may substantially reduce these demands without serious
penalty in many practical situations. Nevertheless, other attempts at avoiding
the construction of the full utility model have been made.

Even for single criterion models, the construction and validation of the com-
plete utility model may be seen as too burdensome. Quite early work recognized,
however, that it may often not be necessary to construct the full utility function
in order to confirm whether one alternative is preferred to another. The con-
clusions may be derived from the concepts of stochastic dominance introduced
by [47], and extended (to include third order stochastic dominance) by [99].

For purposes of defining stochastic dominance, suppose for the moment that
there is only one criterion which we shall denote by Z(x) (i.e. unsubscripted).
Then let P x(z) be the (univariate) probability distribution function of Z(x), i.e.:
P x(z) = Pr[Z(x) ≤ z]. With some abuse of notation, we shall use P x (with-
out argument) to denote the probability distribution described by the function
P x(z). Suppose also that values for Z(x) are bounded between zL and zU .

Three degrees of stochastic dominance may then be defined as follows.

First degree stochastic dominance (FSD): P x stochastically dominates P y

in the first degree if and only P x(z) ≤ P y(z) for all z ∈ [zL, zU ] ([47]).

Second degree stochastic dominance (SSD): P x stochastically dominates
P y in the second degree if and only:∫ ζ

zL
P x(z)dz ≤

∫ ζ

zL
P y(z)dz

for all ζ ∈ [zL, zU ] ([47]).

Third degree stochastic dominance (TSD): P x stochastically dominates
P y in the third degree if and only E[Z(x)] ≥ E[Z(y)] and:∫ η

zL

∫ ζ

zL
P x(z)dzdζ ≤

∫ η

zL

∫ z

zL
P y(z)dzdζ

for all η ∈ [zL, zU ] ([99]).
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In this single-criterion case, the standard axioms of expected utility theory
imply the existence of a utility function u(z) such that x � y if and only if:∫ zU

zL
u(z)dP x(z >

∫ zU

zL
u(z)dP y(z).

Without having explicitly to identify the utility function, however, considera-
tions of stochastic dominance allow us to conclude the following ([8]):

1. If P x stochastically dominates P y in the first degree (P x FSD P y), then
x � y provided that u(z) is an increasing function of z (which can be
generally be assumed to be true in practical problems).

2. If P x SSD P y, then x � y provided that u(z) is a concave increasing
function of z (i.e. the decision maker is risk averse).

3. If P x TSD P y, then x � y provided that u(z) is a concave increasing
function of z with positive third derivative (corresponding to a risk averse
decision maker exhibiting decreasing absolute risk aversion).

The potential importance of the above results lies in the claim which has
been made that in practice some form of stochastic dominance may hold between
many pairs of probability distributions. In other words, we may often be able
to make pairwise comparisons between alternatives according to a particular
criterion on the basis of stochastic dominance considerations, without needing
to establish the partial value function for comparison of lotteries. In fact, we
may often argue that FSD provides a strict pairwise preference, while SSD and
TSD provide weaker forms of pairwise preference. Only in the absence of any
stochastic dominance would we be unable to determine a preference without
obtaining much stronger preference information from the decision maker.

Many of the more recent developments in this area have focussed on the prob-
lem of continuous optimization under stochastic dominance constraints (see, for
example, [26]), often in the context of (single-criterion) portfolio optimization
[83]. However, for discrete decision problems the existence of pairwise prefer-
ences at the level of a single criterion under uncertainty suggests that some
form of outranking approach may be appropriate to aggregation across multiple
criteria under uncertainty. A number of approaches [25, 72, 23, 32, 70] com-
pare distributions by constructing a matrix Pj whose entries P jik denote the
probability that alternative ai is superior to alternative ak on criterion cj i.e.
Pr[Zij ≥ Zkj ]. The models differ with respect to the subsequent exploitation

of the probabilities. [25] and [70] both aggregate the P jik using a weighted sum
over attributes to arrive at a global index for each pairwise comparison Pik. [32]
compute joint probabilities associated with each of 2J possible permutations
of binary indicators denoting (attribute-specific) outranking between a pair of
alternatives. Each of these is taken as evidence in favour of the ‘superiority’,
‘inferiority’, or ‘indifference’ of ai relative to ak, based on a comparison with a
user-defined threshold. A further algorithm is required to exploit the results.
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[72] incorporate more sophisticated outranking concepts such as indifference and
preference thresholds, but subsequent aggregation and exploitation proceeds in
a similar fashion to Electre III. [23] compute stochastic “preference indices”
measuring the degree of preference for one lottery over another in terms of one
criterion, to be aggregated according to an outranking philosophy. Their prefer-
ence indices may not be easily interpretable by many decision makers however,
and perhaps with this problem in mind, [73] (but see also [5]) suggested an alter-
native outranking approach in which preferences according to individual criteria
were established as far as possible by stochastic dominance considerations.

Martel and Zaras found it useful to introduce two forms of concordance
index, which they term “explicable” and “non-explicable”. For the “explicable”
concordance, x is judged at least as good as y according to criterion i if P xi
stochastically dominates P yi at first, second or third degrees. This can be quite a
strong assumption, as the preference assumption under TSD requires decreasing
absolute risk aversion. The “non-explicable” concordance arises if neither of P xi
or P yi stochastically dominates the other. The authors concede that in this case
it is not certain that x is at least as good as y, but they do combine the two
indices under certain conditions. The discordance when comparing x to y is
only non-zero in their model if P yi FSD P xi . The extensions of [5, 79, 107]
are largely concerned with constructing more fine-grained indices of stochastic
dominance. Dominance-based methods have also been extended to make use
of other data types, notably fuzzy numbers, and possibilistic and evidentiary
evaluations [106, 12, 19]. These initially transform uncertain quantities so that
they assume some of the properties of probability distributions before applying
standard dominance concepts. Notably, this allows for the possibility of using
several different data types in the same decision problem.

Although the implementation of many of the dominance-based approaches
remain untested, they may have potential as an approach to dealing with uncer-
tainty in MCDA using quite minimal preference information from the decision
maker. This might at least be valuable for a first-pass screening of alternatives.
Two problems may, however, limit wide applicability, especially in the MCDA
context:

• Strong independence assumptions are implicitly made: The approach is
based entirely on the marginal distributions of the elements of Z(x). This
would only be valid if these elements (i.e. the criteria) were stochastically
independent, or if the decision maker’s preferences were additively inde-
pendent in the sense of [56]. Either assumption would need to be carefully
justified.

• Strong risk aversion assumptions are made: As indicated above, the method
as proposed bases concordance measures on risk aversion and on decreasing
absolute risk aversion. Especially the latter assumption may not always
be easy to verify. The method can be weakened by basing concordance
either only on FSD or on FSD and SSD, but this may not generate such
useful results.
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There is clear scope for further research aimed at addressing the above prob-
lems.

5 Risk Measures as Surrogate Criteria

In this and the next sections, we move to more pragmatic approaches to dealing
with uncertainty in the multicriteria context.

One obvious modelling approach is to view avoidance of risks as decision
criteria in their own right. For example, the standard Markowitz portfolio theory
(cf. [53]) represents a risky single-criterion objective (monetary reward) in terms
of what are effectively two non-stochastic measures, namely expectation and
standard deviation of returns. In this sense a single criterion decision problem
under uncertainty is structured as a deterministic bi-criterion decision problem.
The extension to risk components for each of number of fundamental criteria is
obvious (see, for example, [75], p. 104, in the context of AHP).

There has, in fact, been a considerable literature on the topic of measuring
risk for purposes of decision analysis, much of it motivated by the descriptive
failures of expected utility theory. Papers by [86], [53], and by [62] contain
many useful references. This literature is virtually entirely devoted to the single
criterion case (typically financial returns), but it is worth recalling some of the
key results with a view to extending the approaches to the multicriteria case.

The common theme has been that of developing axiomatic foundations for
representation of psychological perceptions of risk (including consideration of
importance and impact in addition to simple uncertainty), often based on some
form of utility model. For example, [10] considers situations in which, if a deci-
sion maker switches from preferring one (typically more risky) lottery to another
as his/her wealth increases, then he/she never switches back to preference for
the first as wealth further increases. This he terms the “one-switch” rule for
risk preferences, and demonstrates that if the decision maker is decreasingly
risk averse, obeys the one switch rule, and approaches risk neutrality as total
wealth tends to infinity, then the utility as a function of wealth w must take on
the form w − be−cw for some positive parameters b and c. Taking expectations
results in an additive aggregation of two criteria, namely:

• The expectation of wealth (to be maximized); and

• The expectation of be−cw (to be minimized), which can be viewed as a
measure of risk.

[86] and [53] provide arguments for general moments of the distribution of
returns (including but not restricted to variance) and/or expectations of terms
such as be−cw, as measures of risk. While these may be useful as descriptive
measures of risk behaviour, from the point of view of practical decision aid the
use of variances to measure risk has been criticised for its symmetric treatment
of gains are losses as well as its “ineffective” treatment of low-probability events
[62]. It also seems doubtful whether a decision maker would be able to inter-
pret anything but variance (or standard deviation) for purposes of providing
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necessary preference information (to establish tradeoffs, relative weights, goals,
etc.).

More recent attention has focussed on a number of “downside” risk measures
which consider only the impact of negative events. These include the semivari-
ance E[(X−E[X])2|X < E[X]], which measures the risk associated with obtain-
ing a below-average performance and has been extended to an expected regret
measure [24] using an arbitrary threshold t rather than mean performance i.e.
E[(X−t)2|X < t]. Two further measures of risk can be obtained by either defin-
ing an a priori desired probability level and assessing the associated quantile of
performance (often referred to as ‘variance-at-risk’ in financial applications), or
by defining an a priori target and assessing the probability of this target not
being met. The use of quantiles (and, by extension, probabilities) for single-
attribute risk modelling has been criticised, however, for (a) not accounting for
extreme losses beyond the specified cut-off, (b) non-convexity, implying that
the risk of a portfolio of alternatives may exceed the sum of the risks of its con-
stituents, and (c) discontinuity with respect to the specified probability level
[62]. The implications of these criticisms for MCDA have yet to be established,
but it seems clear that the use of any more complex risk measures designed in
response to these criticisms – in particular, ‘conditional variance-at-risk’ mea-
suring expected losses conditional on losses exceeding a specified quantile – runs
the risk of placing unrealistic demands on the decision maker’s ability to assess
inputs and interpret outputs. Limited empirical and simulation work which we
have undertaken in the context of fisheries management ([90]) suggested that
perceptions of risk of fishery collapse might be modelled better by probabilities
of achieving one or more goals (in that case, periods of time before a collapse of
the fishery). One advantage of such measures is that they might be much more
easily interpreted by decision makers for purposes of expressing preferences or
value judgements.

Given the apparent modelling success in representing preferences for single
criterion problems under uncertainty by a simple additive aggregation of ex-
pected return and one or more risk measures (such as variance), there seems to
be merit in exploring the extension of these results to the general multicriteria
problem under uncertainty. In other words, each criterion (not necessarily fi-
nancial) for which there exists substantial uncertainties might be restructured
in terms of two separate criteria, viz. expected return and a measure of risk.
Many of the above results produce an axiomatic justification for an additive
aggregation of expected return and risk, so that these sub-criteria would be
preferentially independent under the same axiomatic assumptions.

In spite of how obvious such multicriteria extensions might be, there seems
to be little reference in the literature to explicit multicriteria modelling in which
each criterion subject to uncertainty is decomposed into subcriteria represent-
ing expected return and risk. It is our experience, however, that various risk-
avoidance criteria arise almost naturally during the structuring phase of decision
modelling, so that in practice risk avoidance criteria may in fact be more com-
mon than is apparent from the literature.

[58] has shown that evaluating alternatives by
∑n
i=1[wiui(E[Zi]) − wRi σ

2
i ]
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with “risk weights” defined by wRi = (1/2)wiu
′′
i (E[Zi]) can lead to close ap-

proximations of expected utility under the important conditions that the Zi be
normally distributed and the underlying utility functions “do not deviate too
much from linear”. Other results [30], however, suggest that under strongly
non-linear preferences this model can perform poorly.

Some of the few explicit references to multicriteria modelling in terms of
a risk-return decomposition appear in the context of goal programming. For
example, [6] expresses a stochastic multicriteria problem in terms of goals on
combinations of risks and returns which are then solved by goal programming,
but he does not separate out the risk and return components which may have led
to a simpler model structure. [61] develops a multicriteria model for financial
management, in which a number of different financial performance measures
are used as criteria, some of which have a risk interpretation. Details of the
solution procedure are not given, but the formulation clearly lends itself to a
goal programming structure.

A somewhat earlier paper by [57] describes an integer goal programming
model for capital budgeting, which can be viewed (together with the STRANGE
method of [93]) as an extension of chance-constrained stochastic programming

(see Elsevier volume for a broad introduction to stochastic programming). Ke-
own and Taylor define goals in terms of desired probability levels, which may
generically be expressed in the form:

Pr [g(Z) ≤ β] ≥ α

where g(Z) is some performance function based on the unknown attribute val-
ues, β the desired level of performance, and α a desired probability of achieving
such performance. By using normal approximations, however, Keown and Tay-
lor reduce the probability goal to one expressed in terms of a combination of
mean and standard deviation which is subsequently treated in a standard goal
programming manner. This suggests opportunity for research into investigation
of generalized goal programming models which deal directly with deviations
from both the desired performance levels (b, above) and the desired probability
levels (α, above).

Some work on fuzzy multiobjective programming (e.g. [22] and [21]) can be
viewed in a similar manner, in the sense that a degree of anticipated level of
goal achievement, measured in a fuzzy membership sense, may be interpreted
as a risk measure.

Despite the attractiveness of using a single fixed target for each criteria, [20]
show that this implies that an equivalent utility function formulation cannot
be guaranteed. In order for such an equivalence to exist, the target must be
probabilistic – an alternative formulation of the expected utility model is to
assume a decision maker who has only two different utility levels depending on
whether an uncertain target is met or not. The ‘target-oriented’ decision maker
assesses probabilities p(x) that the target is achieved given an attribute perfor-
mance of x, rather than a utility function u(x). [17] argue that in some circum-
stances this may be a “more intuitively appealing task”, and extend the single-
attribute results in [20] to show that for each multi-linear (or multiplicative or
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additive) utility function, there is an equivalent multi-linear (or multiplicative
or additive) target-oriented formulation. In fact both the variance-based and
probability-based goal programming models can be shown to be special cases of
the target-oriented preference model [17].

More generally, the structuring of MCDA problems under uncertainty in
terms of expected value and risk sub-criteria for each main criterion does have
the advantage of being relatively simple and transparent to users. Such an ap-
proach appears to be easily integrated into any of the main MCDA methodolo-
gies, namely value measurement, outranking and goal programming/reference
point methods. As indicated earlier, however, a decidedly open research ques-
tion relates to the manner in which risk is most appropriately measured for this
purpose.

A further practical issue is the extent to which the necessary independence
properties can be be verified. In other words, to what extent can “risk” on one
criterion be measured and assessed without taking into consideration ranges
of uncertainties on the other criteria. Once again, this offers much scope for
further research.

6 Scenario Planning and MCDA

Scenario planning ([95], but see also [35] for the decision support context) was
developed as a technique for facilitating the process of identifying uncertain and
uncontrollable factors which may impact on the consequences of decisions in the
strategic management context. Scenario analysis has been widely accepted as an
important component of strategic planning, and it is thus somewhat surprising
how little appears to have been written concerning links between MCDA and
scenario planning. A discussion of the link between scenario planning and deci-
sion making is provided by [48], but does not place this in an MCDA framework.
Some multiobjective mathematical programming models, for example [69], do
include some scenario concepts in an MCDM framework, but these scenarios
tend to focus on technical and easily quantified components such as demands,
rather than the richer “strategic conversation” espoused by van der Heiden. A
broader review of the interrelationships between scenario planning and MCDA
is given by [92].

One of the problems which arise in discussing scenarios is the lack of clear
and agreed definitions of what is meant by a “scenario”. [92] identified at least
four distinctly different concepts which were summarized as follows:

Shell Scenario Planning Approach: This approach is well-documented by
[95]. The emphasis is on constructing a coherent story of the future context
against which the consequences of policies or strategies will be worked out.
The intention of having alternative scenarios is primarily seen to be that
of providing the basis for a “strategic conversation” concerning pros and
cons of strategic decision options. The scenario relates to external events
against which policies are compared and evaluated. It has been stressed
in this approach that policy options do not form part of the scenario.
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Scenarios for exploring uncertainty: Scenarios may be used to explore how
different uncertainties may play out, i.e. to explore a range of possible out-
comes: see, e.g., [97]. In some senses this use of scenarios is similar to that
within the Shell scenario planning context described above. The key dif-
ference is that there are no identified strategies needing to be evaluated
against them. One simply explores possible futures, maybe to stimulate
thinking about whether a change in strategy is necessary or whether there
are opportunities that might be capitalized upon. Government Foresight
studies are a good example of such a use: precursors to subsequent devel-
opment and deliberation of specific strategies.

Scenarios for advocacy or political argument: This approach is allied to
the previous two, but policy decisions or directions which are either being
advocated or opposed are now explicitly integrated into the scenario, in
order to emphasize plausible consequences of the policy directions. The
purpose in producing the scenario is to create a story which highlights
either the benefits or dangers of following one or other policy. [50] refers
to utopian or dystopian perspectives being embedded in such uses of sce-
narios. The scenarios developed for South African political futures at
a workshop involving a number of significant players during 1991/1992
are often held up as an example of this use of scenarios (and suggested
as a major driver in the relatively peaceful transition which followed)1.
Even the names chosen to describe the scenarios (“ostrich”, “lame duck”,
“Icarus” and “flight of the flamingos”) were chosen to evoke strong emo-
tive responses. However significant these scenarios were in influencing the
direction of negotiations in South Africa, they did not involve any ana-
lytical comparison of policy options . . . the “flight of the flamingos” was
embraced as self-evidently the only desirable future.

Representative sample of future states: This is a more technical approach.
Future states are conceptualized in terms of a multivariate probability
distribution on the state space. It is, however, recognized that the com-
plete distribution may never be fully identified, and may in any case be
too mathematically complicated to permit clear analysis of management
options. For this reason, analysis will be based on a small number of rep-
resentative outcomes in the sample space, but designed for good coverage
as in experimental design, rather than selected randomly or because they
seem “interesting”.

The primary goal of scenario planning, at least in the first three perspectives
above, is in the first instance to provide a structured “conversation” to sensitize
decision makers to external and uncontrollable uncertainties, and to develop a
shared understanding of such uncertainties. The approach is, however, naturally
extended to the more analytical process of designing, evaluating and selecting

1For a detailed description, see Global Business Network, paper accessed on 4 Jan 2011
from http://www.generonconsulting.com/publications/papers/pdfs/Mont Fleur.pdf.
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courses of action on the basis of robustness to these uncertainties, which suggests
close parallels with MCDA (as discussed, for example, by [39]). We shall explore
these parallels shortly.

Scenarios are meant to represent fairly extreme futures than can still be
viewed as plausible. As to what constitutes sufficiently “extreme” would depend
on the facilitator, as in a very real sense, there will always be a possible future
more extreme (and thus with greater potential impact on the consequences of
decisions) than any which is incorporated into formal scenarios.

Van der Heijden suggests five principles which should guide scenario con-
struction:

• At least two scenarios are required to reflect uncertainty, but more than
four has proved (in his experience) to be impractical;

• Each scenario must be plausible, meaning that it can be seen to evolve in
a logical manner from the past and present;

• Each scenario must be internally consistent;

• Scenarios must be relevant to the client’s concerns and they must provide a
useful, comprehensive and challenging framework against which the client
can develop and test strategies and action plans;

• The scenarios must produce a novel perspective on the issues of concern
to the client.

Once scenarios are constructed, they may be used to explore and to evaluate
alternative strategies for the organization. Most proponents of scenario planning
seem to avoid formal evaluation and analysis procedures, preferring to leave
the selection of strategy to informed judgement. For example, [95] (pp. 232–
235) rejects “traditional rationalistic decision analysis” as an approach which
seeks to find a “right answer”. This, however, represents are rather limited
and technocratic perception of decision analysis, contrary to the constructive
and learning view espoused by most in the MCDA field. The constructivist
perspective is discussed at a number of places by [11] (see particularly Chapters
3, 4 and 11), where it is argued that the underlying axioms are not meant to
suggest a “right answer”, but to provide a coherent discipline within which to
construct preferences and strategies. Within such a view, the aims of scenario
planning and MCDA share many commonalities, suggesting the potential for
substantial synergies in seeking to integrate MCDA and scenario planning. On
the one hand, MCDA can enrich the evaluation process in scenario planning,
while the scenario planning approach can contribute to deeper understanding
of the effects of external uncertainties in MCDA.

Various authors have hinted at the concept of scenarios in MCDA. These in-
clude, for example, [54]; [59], although this is largely in the context of a two state
stochastic programming model; [98], also in a stochastic programming context;
[75], Section 3, who refer to “states of nature”; [94] in the context of multiple
objective linear programming; [76] and [69] in the context of power systems
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planning. These authors do not in general refer directly to the philosophical
basis of scenario planning, however, and in some cases at least, the models are
structured to suggest that the scenarios or states of nature constitute a complete
sample space (see later).

[81] is one of the few to discuss scenario planning in the context of decision
theory or decision analysis, but without substantive link to MCDA. He does
however warn (page 199) of the danger that what might appear to be a robust
choice of action (perhaps through unstructured and unsupported use of scenar-
ios) may in fact be an illusion resulting from the fact that some events have
simply been ignored. Such a danger suggests another perspective on the po-
tential for two-way synergistic advantage between scenario planning and formal
decision analysis: not only may scenario planning provide a means of dealing
with uncertainties in MCDA, but decision analysis might contribute to avoiding
of illusions of robustness or control in decision making. In the latter context,
MCDA might contribute to the choice of scenarios as well as to the formal
analysis of alternative courses of action.

Perhaps the closest formal link between MCDA and scenario planning is
given in Chapter 14 of [39], which we sought to extend in [92]. In the remainder
of this section, we outline these later extensions. Suppose that a set of p sce-
narios indexed as r = 1, 2, . . . , p have been identified for purposes of evaluating
alternatives. Let us then define zir(x) (expressed by a lower case letter to em-
phasize that this is no longer viewed as a random variable) as the consequence
of action x in terms of criterion i, under the conditions defined by scenario r.
As before, zr(x) will represent the corresponding vector of consequences. We
assume for each criterion i and scenario r that preferences are monotonically
increasing with values of zir(x), but we do not by any means imply that prefer-
ences are linear in the zr(x). All that can be inferred is that an alternative x,
say, is preferred to alternative y (say) according to criterion i under the assump-
tions of scenario r if and only if zir(x) > zir(y). If the scenarios are sufficiently
rich to characterize the effects of uncertainties, then each alternative x will to
the same degree be sufficiently characterized by the 2-dimensional (n× p) array
of performance measures zir(x) .

For the remainder of this section, we shall assume that the action space is
finite, i.e. X = {x1, x2, . . . , xq}, say. For this case, [39] propose a three stage
process based on a value function model:

1. Create an additive (multiattribute) value function model for the n criteria,
say

∑n
i=1 wivi(zi), where the partial value functions vi(zi) are defined over

the range of zir(x) values occurring across all scenarios.

2. For each alternative x and scenario r, calculate Vr(x) =
∑i
i=1 wivi(zir(x)).

3. Display the p × q table of Vr(x) values to the decision maker for a final
selection, although Goodwin and Wright do not discuss modes of decision
support for this final choice (implying that perceive it to be a relatively
straightforward cognitive task, which we find difficult to accept in general).
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A critical assumption in the above approach is that of a scenario-independent
value function, i.e. that value trade-offs between criteria are the same under all
scenarios, which again we find far from self-evidently true in general. See for
example [18] for a discussion on the dangers of assuming overly strong indepen-
dence between scenarios.

[78] discuss practical problems which do arise in comparison of outcomes for
all alternative-scenario combinations on a single basis. They proposed appli-
cation of multiattribute value theory within each scenario, but accepting, for
example, that weights associated with different criteria may, and quite typically
do vary between scenarios. Their approach provides an evaluation of alter-
natives separately for each scenario, but they do not seek formal aggregation
across scenarios. Rather, they seek to identify alternatives which are robust
across scenarios in some sense.

The following example, which is a slight extension of that discussed in Section
3, illustrates the difficulties in selecting between alternatives on the basis of the
table of Vr(x) values. In particular, it demonstrates that “robustness” across
scenarios is not necessarily either well-defined or desirable when defined mainly
in terms of variability in the Vr(x) values.

Example: We have two alternatives (x1 and x2), two criteria (C1 and C2), two
scenarios (S1 and S2) and two possible outcomes (expressed as 0 or 1) on
each criterion. Consequences for each action and scenario in terms of each
criterion are given in Table 1.

Table 1: Description of consequences for the simple example

Alternative Scen. S1 Scen. S2

Crit. C1 Crit. C2 Crit. C1 Crit. C2

x1 0 0 1 1
x2 1 0 0 1

The important distinction between the two alternatives is that x1 results
in equal performance on both criteria under either scenario, while x2 re-
sults in diametrically opposing performances on the two criteria under
either scenario. As discussed in Section 3, there is no fundamental rea-
son why one alternative should be preferred to the other. Concerns for
equity between criteria would favour x1, while an acceptance that good
performance on one criterion might compensate for poorer outcomes on
the other criterion might favour choice of x2. A complete MAUT analysis
would resolve the conflicts, but it is not clear that simpler aggregation
methodologies would capture the relevant preferences. In the context of
this example, any methodology should in its structure allow keep the door
open to accept either x1 or x2 depending on the specific decision prefer-
ences which unfold.
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Without loss of generality, the marginal value functions for each of the
two criteria can be defined such that vi(0) = 0 and vi(1) = 1 for both
criteria. For the Goodwin-Wright approach, the Vr(x) table becomes:

Alternative Scenarios

S1 S2

x1 0 1
x2 w1 w2

This representation tends to obscure equity issues, and conventional ro-
bustness considerations seem likely to bias evaluation towards a form of
risk aversion which would favour x2.

There is a clear recognition that preference aggregation needs to be carried
out across both the criteria and scenarios [39, 76, 69]. The view espoused by
[92] is that in a scenario-based MCDA structure, alternatives do fundamentally
need to be evaluated and compared in terms of all p× q performance measures
identified earlier. In other words, at some point attention needs to be given to
how well an alternative performs in terms of each criterion under the conditions
of each scenario. In [92], we make this recognition explicit by reference to each
criterion-scenario combination as a metacriterion. Each metacriterion repre-
sents a dimension on which preferences can and need to be formed and stated.
In the above simple example, there are thus 4 metacriteria, corresponding to the
last four columns of Table 1. Assuming that there is no alternative that is simul-
taneously best in terms of all p× q metacriteria, any decision made will reflect
a balance between better performance on some metacriteria and lesser perfor-
mance on others, i.e. there is an inevitable tradeoff between performances on
each metacriterion, even if this may sometimes be difficult to express explicitly.

The scenario-based MCDA is thus equivalent to a standard multicriteria
problem with p × q criteria (which we have termed metacriteria. In principle,
any technique of MCDA could be applied to this metacriterion structure, but
we illustrate the approach in terms of a value function methodology. Provided
that the metacriteria are preferentially independent, standard results [e.g., 56,
Chapter 5] imply that the alternatives may be ordered on the basis of an additive
value function which can here be expressed in the form:

V (x) =

n∑
i=1

p∑
r=1

wirvir(zir(x)) (5)

where according to our structure, separate partial value functions need to be
established for each criterion-scenario combination. This approach is illustrated
below for our previous simple example.

Example (Continued). We can without loss of generality scale each marginal
value function such that vir(0) = 0 and vir(1) = 1. Thus V (x1) = w12 +
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w22 and V (x2) = w11 + w22, so that x1 is preferred to x2 if and only if
w12 > w11, and vice versa (with indifference if w12 = w11).

Consider how the assessment of w12 and w11 might now proceed. We have
that performance on criterion 2 is independent of action within each sce-
nario, so that the performance on criterion 2 becomes a defining feature
of the scenarios. The question to the decision maker is thus whether good
performance on criterion 1 is more important in scenario 1 (characterized
by poor outcomes on criterion 2 irrespective of action taken) or in scenario
2 (characterized by good outcomes on criterion 2). When inter-criterion
compensation is beneficial, the first is more important; under concerns for
equity, the second is more important. The necessity for such value judge-
ments regarding compensation and equity concerns are clearly surfaced
directly by the proposed methodology.

More generally, consider how metacriterion weights may be established.
Swing-weighting is an established procedure for weight elicitation, but we need
to recognize that the number of metacriteria will typically be too large to per-
form all swing-weighting comparisons simultaneously. Some form of hierarchical
assessment may be needed, and two potential approaches may be recognized:

Approach 1.

• For each scenario r, compare the importance swings for each of the
n criteria within this scenario, giving estimates of the ratios wir/wkr
for all pairs of criteria i, k;

• Then for one or two of the more important criteria, compare the
relative importance of the swings for these criteria across each of the
p scenarios.

Approach 2.

• For each criterion i, compare the importance swings of criterion i
within each of the p scenarios, giving estimates of the ratios wir/wis
for all pairs of scenarios r, s;

• Then for one or two selected scenarios, compare the relative impor-
tance of the swings for each of the n criteria.

Neither approach differentiates in essence between the evaluation of impor-
tance of metacriteria within scenarios (comparisons of the initial criteria in a
standard MCDA approach), or between scenarios (comparisons of scenarios).
The distinction between the approaches is a matter of the timing of the com-
parisons during the analytical process. At this stage, we have not formed any
clear conclusions as to which approach is preferable, which should form the
topic of future empirical research. In the above simple example, however, either
approach would recognize that w2r = 0 for both scenarios (a zero swing having
zero importance), leaving just the comparison of w11 and w12 to be undertaken,
as indicated in the example (with the implied focus on importance of equity
versus compensation).
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7 Implications for Practice

It should be evident from the preceding discussion that there still remains con-
siderable scope for research into the treatment of substantive external uncer-
tainties within an MCDA framework. It is hoped that such research will lead to
ever-improved methodologies. Nevertheless, for the practitioner, certain guide-
lines can be given at the present time. These may be summarized as follows.

1. There is always a role for systematic sensitivity analysis for moderate
levels of uncertainty, especially internal uncertainties, but care needs to
be taken to avoid simple “one-at-a-time” variations in assumptions, as
such an approach may miss interacting effects.

2. For those working within a value or utility function framework, the ex-
pectation of a simple additive value function can generate quite useful
insights for the decision maker, provided that due attention is given to
the shape (changing marginal values) of the function (cf. Stewart [88]).
On the other hand, complete multiplicative or multilinear multiattribute
utility functions may be difficult to implement correctly.

3. With any MCDA approach, there may be value and some theoretical jus-
tification in decomposing those criteria for which there is substantial un-
certainty regarding outcomes, into two subcriteria of expected value and
a risk measure respectively. An open question remains as to whether vari-
ance or standard deviation (which are conventionally used in this context)
are the most appropriate risk measures for all problem types.

4. The integration of MCDA and scenario planning appears to be a poten-
tially powerful tool, and may be particularly transparent to many decision
makers. The approach is relevant to any methodology of MCDA. There
do, nevertheless, remain some open questions, especially as regards the
number of scenarios to be used and the means by which they are con-
structed or selected.
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