121 research outputs found
Measurement of CP observables in B± â D(â)K± and B± â D(â)ϱ decays
Measurements of CP observables in B ± âD (â) K ± and B ± âD (â) Ï Â± decays are presented, where D (â) indicates a neutral D or D â meson that is an admixture of D (â)0 and DÂŻ (â)0 states. Decays of the D â meson to the DÏ 0 and DÎł final states are partially reconstructed without inclusion of the neutral pion or photon, resulting in distinctive shapes in the B candidate invariant mass distribution. Decays of the D meson are fully reconstructed in the K ± Ï â , K + K â and Ï + Ï â final states. The analysis uses a sample of charged B mesons produced in pp collisions collected by the LHCb experiment, corresponding to an integrated luminosity of 2.0, 1.0 and 2.0 fb â1 taken at centre-of-mass energies of s=7, 8 and 13 TeV, respectively. The study of B ± âD â K ± and B ± âD â Ï Â± decays using a partial reconstruction method is the first of its kind, while the measurement of B ± âDK ± and B ± âDÏ Â± decays is an update of previous LHCb measurements. The B ± âDK ± results are the most precise to date
First observation of forward production in collisions at TeV
The decay ZâbbÂŻ is reconstructed in pp collision data, corresponding to 2 fb â1 of integrated luminosity, collected by the LHCb experiment at a centre-of-mass energy of s=8 TeV. The product of the Z production cross-section and the ZâbbÂŻ branching fraction is measured for candidates in the fiducial region defined by two particle-level b -quark jets with pseudorapidities in the range 2.220 GeV and dijet invariant mass in the range 452045 < m_{jj} < 1655462 \pm 763Z \rightarrow b \bar{b}332 \pm 46 \pm 59Z \rightarrow b \bar{b}pp$ collisions
Study of the lineshape of the chi(c1) (3872) state
A study of the lineshape of the chi(c1) (3872) state is made using a data sample corresponding to an integrated luminosity of 3 fb(-1) collected in pp collisions at center-of-mass energies of 7 and 8 TeV with the LHCb detector. Candidate chi(c1)(3872) and psi(2S) mesons from b-hadron decays are selected in the J/psi pi(+)pi(-) decay mode. Describing the lineshape with a Breit-Wigner function, the mass splitting between the chi(c1 )(3872) and psi(2S) states, Delta m, and the width of the chi(c1 )(3872) state, Gamma(Bw), are determined to be (Delta m=185.598 +/- 0.067 +/- 0.068 Mev,)(Gamma BW=1.39 +/- 0.24 +/- 0.10 Mev,) where the first uncertainty is statistical and the second systematic. Using a Flatte-inspired model, the mode and full width at half maximum of the lineshape are determined to be (mode=3871.69+0.00+0.05 MeV.)(FWHM=0.22-0.04+0.13+0.07+0.11-0.06-0.13 MeV, ) An investigation of the analytic structure of the Flatte amplitude reveals a pole structure, which is compatible with a quasibound D-0(D) over bar*(0) state but a quasivirtual state is still allowed at the level of 2 standard deviations
Measurement of the CKM angle in and decays with
A measurement of -violating observables is performed using the decays
and , where the meson is
reconstructed in one of the self-conjugate three-body final states and (commonly denoted ). The decays are analysed in bins of the -decay phase space, leading
to a measurement that is independent of the modelling of the -decay
amplitude. The observables are interpreted in terms of the CKM angle .
Using a data sample corresponding to an integrated luminosity of
collected in proton-proton collisions at centre-of-mass
energies of , , and with the LHCb experiment,
is measured to be . The hadronic
parameters , , , and ,
which are the ratios and strong-phase differences of the suppressed and
favoured decays, are also reported
- âŠ