33 research outputs found

    Influence of sampling and disturbance history on climatic sensitivity of temperature-limited conifers

    Get PDF
    The study was supported by the institutional project MSMT (CZ.02.1.01/0.0/0.0/16_019/0000803) and the Czech Ministry of Education (Project INTER-COST No. LCT17055).Accurately capturing medium- to low-frequency trends in tree-ring data is vital to assessing climatic response and developing robust reconstructions of past climate. Non-climatic disturbance can affect growth trends in tree-ring-width (RW) series and bias climate information obtained from such records. It is important to develop suitable strategies to ensure the development of chronologies that minimize these medium- to low-frequency biases. By performing high density sampling (760 trees) over a ~40-ha natural high-elevation Norway spruce (Picea abies) stand in the Romanian Carpathians, this study assessed the suitability of several sampling strategies for developing chronologies with an optimal climate signal for dendroclimatic purposes. There was a roughly equal probability for chronologies (40 samples each) to express a reasonable (r = 0.3?0.5) to non-existent climate signal. While showing a strong high-frequency response, older/larger trees expressed the weakest overall temperature signal. Although random sampling yielded the most consistent climate signal in all sub-chronologies, the outcome was still sub-optimal. Alternative strategies to optimize the climate signal, including very high replication and principal components analysis, were also unable to minimize this disturbance bias and produce chronologies adequately representing climatic trends, indicating that larger scale disturbances can produce synchronous pervasive disturbance trends that affect a large part of a sampled population. The Curve Intervention Detection (CID) method, used to identify and reduce the influence of disturbance trends in the RW chronologies, considerably improved climate signal representation (from r = 0.28 before correction to r = 0.41 after correction for the full 760 sample chronology over 1909?2009) and represents a potentially important new approach for assessing disturbance impacts on RW chronologies. Blue intensity (BI) also shows promise as a climatically more sensitive variable which, unlike RW, does not appear significantly affected by disturbance. We recommend that studies utilizing RW chronologies to investigate medium- to long-term climatic trends also assess disturbance impact on those series.PostprintPeer reviewe

    The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes.Peer reviewe

    Jet stream position explains regional anomalies in European beech forest productivity and tree growth.

    Get PDF
    The mechanistic pathways connecting ocean-atmosphere variability and terrestrial productivity are well-established theoretically, but remain challenging to quantify empirically. Such quantification will greatly improve the assessment and prediction of changes in terrestrial carbon sequestration in response to dynamically induced climatic extremes. The jet stream latitude (JSL) over the North Atlantic-European domain provides a synthetic and robust physical framework that integrates climate variability not accounted for by atmospheric circulation patterns alone. Surface climate impacts of north-south summer JSL displacements are not uniform across Europe, but rather create a northwestern-southeastern dipole in forest productivity and radial-growth anomalies. Summer JSL variability over the eastern North Atlantic-European domain (5-40E) exerts the strongest impact on European beech, inducing anomalies of up to 30% in modelled gross primary productivity and 50% in radial tree growth. The net effects of JSL movements on terrestrial carbon fluxes depend on forest density, carbon stocks, and productivity imbalances across biogeographic regions

    Rozšíření trolejbusové dopravy v Ostravě

    No full text
    Import 20/04/2006Prezenční výpůjčkaVŠB - Technická univerzita Ostrava. Fakulta strojní. Institut (342) doprav

    Collaboration among Selected Senior People´s Establishments in the Field of Leisure Time Activities

    No full text
    Bakalářská práce popisuje vybraná zařízení pro seniory, analyzuje nabídku volnočasových aktivit, analyzuje realizované rozhovory s respondenty a dále ověřuje míru zapojení seniorů do volnočasových aktivit. Hlavním cílem je návrh spolupráce těchto zařízení v oblasti zkvalitnění života seniorů v těchto zařízeních.The bachelor thesis desribes selected facilities for senior citizens, analyzes the offer of leisure activities, the interviews conducted with the respondents and verifies the level of engagement of senior citizens in leisure activities. The main goal of the thesis is proposing co-operation of the facilities with respect to improving the quality of life of senior citizens

    Modelling approaches for pipe inclination effect on deposition limit velocity of settling slurry flow

    No full text
    The deposition velocity is an important operation parameter in hydraulic transport of solid particles in pipelines. It represents flow velocity at which transported particles start to settle out at the bottom of the pipe and are no longer transported. A number of predictive models has been developed to determine this threshold velocity for slurry flows of different solids fractions (fractions of different grain size and density). Most of the models consider flow in a horizontal pipe only, modelling approaches for inclined flows are extremely scarce due partially to a lack of experimental information about the effect of pipe inclination on the slurry flow pattern and behaviour. We survey different approaches to modelling of particle deposition in flowing slurry and discuss mechanisms on which deposition-limit models are based. Furthermore, we analyse possibilities to incorporate the effect of flow inclination into the predictive models and select the most appropriate ones based on their ability to modify the modelled deposition mechanisms to conditions associated with the flow inclination. A usefulness of the selected modelling approaches and their modifications are demonstrated by comparing model predictions with experimental results for inclined slurry flows from our own laboratory and from the literature

    Settling slurry flow near deposition velocity in inclined pipe of negative slope

    Get PDF
    Pipe flow of sand-water slurry (settling slurry) is sensitive to pipe inclination. The effect of the angle to which the partially stratified flow is inclined from the horizontal has been subject to investigation in numerous studies. However, almost all of them focus on ascending flows, i.e. flows inclined to positive angles of inclination. It is well known that settling slurry flows inclined to negative slopes (descending flows) differ from those inclined to positive slopes, particularly at velocities near the deposition limit. The deposition limit velocity is the flow velocity at which stationary deposit starts to be formed at the bottom of the pipe. We investigate the effect of the negative slope on pipe flow near deposition limit velocity in the broad range of inclination angles. Besides the deposition limit, we focus on the distribution of solids across the pipe cross section. We combine experimental approach with mathematical modelling. Our new experiments with medium-to-coarse sand (mass-medium grain size 0.87 mm) in a 100-mm pipe inclined from 0 to -45 degree provide suitable data for a validation of predictions of our layered model for partially stratified flows in inclined pipes

    Experimental investigation of fine-grained settling slurry flow behaviour in inclined pipe sections

    No full text
    For the safe and economical design and operation of freight pipelines it is necessary to know slurry flow behaviour in inclined pipe sections, which often form significant part of pipelines transporting solids. Fine-grained settling slurry was investigated on an experimental pipe loop of inner diameter D = 100 mm with the horizontal and inclined pipe sections for pipe slopes ranging from −45° to +45°. The slurry consisted of water and glass beads with a narrow particle size distribution and mean diameter d50 = 180 µm. The effect of pipe inclination, mean transport volumetric concentration, and slurry velocity on flow behaviour, pressure drops, deposition limit velocity, and concentration distribution was studied. The study revealed a stratified flow pattern of the studied slurry in inclined pipe sections. Frictional pressure drops in the ascending pipe were higher than that in the descending pipe, the difference decreased with increasing velocity and inclination. For inclination less than about 25° the effect of pipe inclinations on deposition limit velocity and local concentration distribution was not significant. For descending pipe section with inclinations over −25° no bed deposit was observed

    Solution of full-core VVER-440 PK-3+calculation benchmark by serpent

    No full text
    This work deals with the updated reference solution of the Full-Core VVER-440 PK-3+ benchmark which is based on the extended calculation benchmark from 2018. [1] The modification consists of a new type of fuel assembly with PK-3 design in the loading pattern. The main aim of this calculation is to create a reference solution to test the power distribution predicted by macro-code. The solution has been calculated by the transport code Serpent, code using Monte Carlo method and including all possible levels of power distribution in a 2-D problem. The results consist of the effective multiplication factor (Keff) and the power distribution on fuel assembly (Kq) and the pin-by-pin (Kq) level. The paper also includes a detailed evaluation of the precision of Monte Carlo solution and a study of the influence of nuclear data library suitable for comparison and validation
    corecore