249 research outputs found

    THE FEATURES AND POSSIBILITIES OF THE RUSSIAN WELLNESS TOURISTIC DESTINATIONS POTENTIAL EVALUATION

    Get PDF
    The article describes the main problems of the Russian regional tourism. The article includes concepts touristic destination and cartographic taxonomy. In the article suggestions were made for the formation of “the Health Cluster”

    Proposal for photoacoustic ultrasonic generator based on Tamm plasmon structures

    Full text link
    The scheme of generation of ultrasound waves based on optically excited Tamm plasmon structures is proposed. It is shown that Tamm plasmon structures can provide total absorption of a laser pulse with arbitrary wavelength in a metallic layer providing the possibility of the use of an infrared semiconductor laser for the excitation of ultrasound waves. Laser pulse absorption, heat transfer and dynamical properties of the structure are modeled, and the optimal design of the structure is found. It is demonstrated that the Tamm plasmon-based photoacoustic generator can emit ultrasound waves in the frequency band up to 100 MHz with pre-defined frequency spectrum. Optical power to sound power conversion efficiency grows linearly with frequency of the laser modulation and excitation power

    ОСОБЕННОСТИ И ВОЗМОЖНОСТИ ОЦЕНКИ ПОТЕНЦИАЛА РОССИЙСКИХ ДЕСТИНАЦИЙ ОЗДОРОВИТЕЛЬНОГО ТУРИЗМА

    Get PDF
    The article describes the main problems of the Russian regional tourism. The article includes concepts touristic destination and cartographic taxonomy. In the article suggestions were made for the formation of “the Health Cluster”.В статье рассмотрены основные проблемы российского регионального туризма. Даны понятия туристская дестинация и картографическая таксономия. Сделаны предложения по формированию «Оздоровительного кластера»

    The Effect of Rare-Earth Elements on the Morphological Aspect of Borate and Electrocatalytic Sensing of Biological Compounds

    Get PDF
    Adjusting the morphological characteristics of a material can result in improved electrocatalytic capabilities of the material itself. An example of this is the introduction of rare-earth elements into the borate structure, which gives a new perspective on the possibilities of this type of material in the field of (bio)sensing. In this paper, we present the preparation of borates including La, Nd and Dy and their application for the modification of a glassy carbon electrode, which is used for the non-enzymatic detection of a biologically relevant molecule, vitamin B6 (pyridoxine). Compared with the others, dysprosium borate has the best electrocatalytic performance, showing the highest current and the lowest impedance, respectively, as determined using cyclic voltammetry and impedance tests. Quantitative testing of B6 was performed in DPV mode in a Britton–Robinson buffer solution with a pH of 6 and an oxidation potential of about +0.8 V. The calibration graph for the evaluation of B6 has a linear range from 1 to 100 μM, with a correlation coefficient of 0.9985 and a detection limit of 0.051 μM. The DyBO3-modified electrode can be used repeatedly, retaining more than 90% of the initial signal level after six cycles. The satisfactory selectivity offered a potential practical application of the chosen method for the monitoring of pyridoxine in artificially prepared biological fluids with acceptable recovery. In light of all the obtained results, this paper shows an important approach for the successful design of electrocatalysts with tuned architecture and opens new strategies for the development of materials for the needs of electrochemical (bio)sensing

    Atomically thin boron nitride: a tunnelling barrier for graphene devices

    Get PDF
    We investigate the electronic properties of heterostructures based on ultrathin hexagonal boron nitride (h-BN) crystalline layers sandwiched between two layers of graphene as well as other conducting materials (graphite, gold). The tunnel conductance depends exponentially on the number of h-BN atomic layers, down to a monolayer thickness. Exponential behaviour of I-V characteristics for graphene/BN/graphene and graphite/BN/graphite devices is determined mainly by the changes in the density of states with bias voltage in the electrodes. Conductive atomic force microscopy scans across h-BN terraces of different thickness reveal a high level of uniformity in the tunnel current. Our results demonstrate that atomically thin h-BN acts as a defect-free dielectric with a high breakdown field; it offers great potential for applications in tunnel devices and in field-effect transistors with a high carrier density in the conducting channel.Comment: 7 pages, 5 figure

    GLOBAL STABILITY AND BIFURCATIONS ANALYSIS OF AN EPIDEMIC MODEL WITH CONSTANT REMOVAL RATE OF THE INFECTIVE

    Get PDF
    In this thesis we consider an epidemic model with a constant removal rate of infective individuals is proposed to understand the effect of limited resources for treatment of infective on the disease spread. It is found that it is unnecessary to take such a large treatment capacity that endemic equilibria disappear to eradicate the disease. It is shown that the outcome of disease spread may depend on the position of the initial states for certain range of parameters. It is also shown that the model undergoes a sequence of bifurcations including saddle-node bifurcation, subcritical Hopf bifurcation. Keyword: Epidemic model, nonlinear incidence rate, basic reproduction number, local and global stabilit

    Engineering transcription factors with novel DNA-binding specificity using comparative genomics

    Get PDF
    The transcriptional program for a gene consists of the promoter necessary for recruiting RNA polymerase along with neighboring operator sites that bind different activators and repressors. From a synthetic biology perspective, if the DNA-binding specificity of these proteins can be changed, then they can be used to reprogram gene expression in cells. While many experimental methods exist for generating such specificity-altering mutations, few computational approaches are available, particularly in the case of bacterial transcription factors. In a previously published computational study of nitrogen oxide metabolism in bacteria, a small number of amino-acid residues were found to determine the specificity within the CRP (cAMP receptor protein)/FNR (fumarate and nitrate reductase regulatory protein) family of transcription factors. By analyzing how these amino acids vary in different regulators, a simple relationship between the identity of these residues and their target DNA-binding sequence was constructed. In this article, we experimentally tested whether this relationship could be used to engineer novel DNA–protein interactions. Using Escherichia coli CRP as a template, we tested eight designs based on this relationship and found that four worked as predicted. Collectively, these results in this work demonstrate that comparative genomics can inform the design of bacterial transcription factors

    Abstracts of presentations on plant protection issues at the fifth international Mango Symposium Abstracts of presentations on plant protection issues at the Xth international congress of Virology: September 1-6, 1996 Dan Panorama Hotel, Tel Aviv, Israel August 11-16, 1996 Binyanei haoma, Jerusalem, Israel

    Get PDF

    Measurement of charged particle spectra in deep-inelastic ep scattering at HERA

    Get PDF
    Charged particle production in deep-inelastic ep scattering is measured with the H1 detector at HERA. The kinematic range of the analysis covers low photon virtualities, 5 LT Q(2) LT 100 GeV2, and small values of Bjorken-x, 10(-4) LT x LT 10(-2). The analysis is performed in the hadronic centre-of-mass system. The charged particle densities are measured as a function of pseudorapidity (n(*)) and transverse momentum (p(T)(*)) in the range 0 LT n(*) LT 5 and 0 LT p(T)(*) LT 10 GeV in bins of x and Q(2). The data are compared to predictions from different Monte Carlo generators implementing various options for hadronisation and parton evolutions

    Terahertz plasma wave localization and velocity control in tapered double-layer graphene heterostructure

    No full text
    Terahertz plasma wave (plasmon) localization and velocity control in tapered heterostructure (taper) with double-layer graphene were numerically studied. We employ a simple rigorous theoretical model to find out the plasmon localization length and energy velocity values along the tapered structure. It is shown that the plasmon decelerates while moving from the taper apex and the deceleration process is accompanied with increase of the plasmon wave localization. While moving along the structure from the taper apex, the plasmon energy velocity as well as the plasmon localization length can become nearly an order of magnitude smaller as compared to the values near the taper apex
    corecore