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We investigate the electronic properties of heterostructures based on ultrathin hexagonal boron 

nitride (h-BN) crystalline layers sandwiched between two layers of graphene as well as other 

conducting materials (graphite, gold). The tunnel conductance depends exponentially on the 

number of h-BN atomic layers, down to a monolayer thickness. Exponential behaviour of I-V 

characteristics for graphene/BN/graphene and graphite/BN/graphite devices is determined 

mainly by the changes in the density of states with bias voltage in the electrodes. Conductive 

atomic force microscopy scans across h-BN terraces of different thickness reveal a high level of 

uniformity in the tunnel current. Our results demonstrate that atomically thin h-BN acts as a 

defect-free dielectric with a high breakdown field; it offers great potential for applications in 

tunnel devices and in field-effect transistors with a high carrier density in the conducting 

channel. 
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Hexagonal boron nitride (h-BN) has great potential for use as the dielectric layer in functional 

heterostructure devices which exploit the remarkable properties of graphene (1-4). The 

combination of graphene and h-BN opens up the exciting possibility of creating a new class of 

atomically-thin multilayered heterostructures (5,6). Graphene and h-BN share the same crystal 

structure and have very similar lattice constants but, unlike graphene, h-BN is an insulator with a 

large energy bandgap of 6 eV (7,8). Most previous studies have focused on the use of thick 

layers of BN as a substrate for graphene electronics (7,9,10) or as a dielectric in experiments on 

coupled 2D electron gases (11). HBN has also been used as a barrier for tunneling experiments: 

thick hBN (>6 layers) was sandwiched between two graphene layers (12) and thinner layers of 

this material (down to monolayer) were used in gold/hBN/gold tunneling devices (13). Extension 

of these results to graphene and graphite tunneling diodes with a monolayer of hBN as a 

tunnelling barrier is of considerable fundamental interest and has the potential for new 

applications such as devices for flexible electronics, especially as the layer thickness can, in 

principle, be controlled with atomic layer precision.  

Here we investigate the electronic properties of tunnel diodes in which h-BN acts as a barrier 

layer between a variety of different conducting materials, such as graphene, graphite and gold. 

We demonstrate that a single atomic layer of h-BN acts as an effective tunnel barrier and that the 

transmission probability of the h-BN barrier decreases exponentially with the number of atomic 

layers. The current-voltage characteristics of these devices show a linear I-V dependence at low 

bias and an exponential dependence at higher applied voltages. We use conductive atomic force 

microscopy (C-AFM) to measure the tunnel current through h-BN terraces of different thickness 

and find that the tunnel current on a particular terrace is spatially uniform and defect-free. 

To investigate the electronic properties of the BN barriers, we fabricated several types of device, 

in the form of the following sandwich structures: Au/BN/Au; graphene/BN/graphene; and 

graphite/BN/graphite. For the Au/BN/Au samples we fabricated gold stripes of typical width 2 

m from a 5 nm Ti + 50 nm Au metallic bilayer deposited on a Si/SiO2 substrate in which the 

oxide layer was 100 nm thick. Flakes of BN were then deposited on the metallic stripes using a 

micromechanical cleavage technique (1). The flake thickness was characterised by a combination 

of optical contrast (8), Raman spectroscopy and AFM methods. BN crystallites of different 



thicknesses which overlapped the gold contacts were identified (8) and top contacts (5nm 

Ti/50nm Au) were deposited by electron beam or laser-writing lithography and electron gun 

evaporation. 

We used an alternative technique to fabricate the graphene/BN/graphene and 

graphite/BN/graphite devices. To form the bottom electrode, micromechanical cleavage (1,5) 

was used to deposit narrow flakes of graphene (or graphite) on a SiO2 substrate. Where 

necessary, the flakes were narrowed by reactive plasma etching through a PMMA mask. 

Similarly prepared and characterised BN crystals were deposited on the graphene (or graphite) 

flakes using a dry-transfer technique (7,10). The top graphene (or graphite) electrode was 

transferred by the same method; (it could be shaped prior to transfer to achieve the desired 

overlapping area). Figure 1 shows representative images of our devices. 

We measured the I-V characteristics of our samples over a range of temperatures. The most 

reliable results were obtained with graphene or graphite as contact layers: for these devices, the 

measured current scaled accurately with the device area. However, gold contacts are somewhat 

less reproducible. We attribute this difference to the atomic flatness of the graphene and graphite 

layers. In contrast, the BN tunnel barrier may delaminate mechanically from the rough surface of 

the metallic layer, thus leading to a change in the active surface area of the device and to a 

reduction of the tunnel current. As shown in Figs. 2 and 3, the I-V curves of all our devices are 

linear around zero bias but have an exponential dependence on V at higher biases. The zero-bias 

conductivity for each type of device scales exponentially with the BN barrier thickness and is of 

the order of 1 kΩ
-1 

µm
-2

 for a monolayer BN sandwiched between two graphite electrodes, 

decreasing to approximately 0.1 GΩ
-1 

µm
-2

 for devices with 4 BN atomic layers, see Fig. 4. The 

Au/BN/Au and graphene/BN/graphene devices demonstrate similar behaviour but with a larger 

spread of estimated current densities due to surface roughness and the effects of residual doping 

respectively. 

Figure 3 demonstrates the exponential dependence of the tunnel current on bias voltages above 

0.5 V. Interestingly, for the graphene/BN/graphene and graphite/BN/graphite devices the 

exponential dependence does not scale with barrier thickness; it is approximately independent of 

barrier thickness, which indicates that the tunnel current is dominated by the so-called tunneling 



density of states. This behaviour can be understood in terms of a simple theoretical model 

(14,15) in which the tunnel current is given by (15) 

 

where f(E) is the Fermi distribution function, DoSB(T)(E) is the density of states in the top 

(bottom) electrode, T(E) is the transmission probability at the given energy. At low temperatures 

the difference of the Fermi functions restricts the relevant energy E integral to eVE  

where μ is the chemical potential. The above formula assumes that there is no in-plane 

momentum conservation, which is most likely to be the case of realistic graphene-hBN 

interfaces. There are several possible mechanisms for elastic scattering at the interface and, in 

particular, unavoidable fluctuations of the mass term due to the lattice mismatch. In our 

modeling we utilized a realistic density of states for graphene (graphite) and assumed the hole 

tunneling with effective mass m=0.5m0 (m0 is the free electron mass) and the height of the 

tunneling barrier 1.5 eV (16,17). 

In order to examine the uniformity and defect density in the BN insulating barrier layer, we 

carried out a separate set of experiments using an atomic force microscope (AFM) tip as the top 

electrode and graphite as the lower electrode, see Fig. 3. When the AFM tip was maintained at 

the same position (with negligible thermal drift), the I-V characteristics were very similar to 

those obtained for the graphite/BN/graphite samples. By comparing the tunnel currents obtained 

on the graphite/BN/graphite and the graphite/BN/tip devices, we were able to estimate the active 

area of the tip to be ~10
3
 nm

2
, in reasonable agreement with the number expected for metal-

coated AFM tips with nominal radius of 10 nm. For the AFM tip experiments, we observed little 

variation in the amplitude of the current for repeated ramps in bias voltage. This suggests that the 

effective area of the contact varied little over the course of the experiment. However, one would 

anticipate that the tip area could change due to the mechanical forces exerted by the sample 

surface. Several similar tips were used on a range of samples: the resulting I-V curves followed 

the same trend for all tip and sample combinations, with only small discrepancies in current due 

to differing tip shapes/areas.  



We also scanned graphite/BN sandwich devices with conducting AFM tips in contact mode with 

a constant bias applied between the graphite layer and tip, Fig 5. The resistance map is very 

uniform, with only small variations of about 10%. For nearly all of the devices we observed no 

evidence of pinholes or defects, even though areas of tens of square microns were scanned. This 

demonstrates that BN can be used as an atomically thin, high-quality insulator.  

In conclusion, we have demonstrated a method for fabricating devices with atomically-thin 

tunnel barriers by cleaving a few layer flakes from an h-BN crystal and transferring them without 

contamination to a suitable contact electrode layer, namely graphene, graphite or Au mounted on 

a Si/SiO2 substrate. A variety of devices can be fabricated by using different combinations of 

these materials for the upper and lower electrodes. Our measurements of the electron tunnel 

current through the barrier demonstrate that the BN films act as a good tunnel barrier down to a 

single atomic plane. Current-voltage measurements were made for different BN thicknesses, 

from 1 to 4 atomic layers. The I-V curves are linear at low bias but take on an exponential 

dependence at higher bias (> 0.4 V). The tunnel current is exponentially dependent on the BN 

barrier thickness, as expected for quantum tunneling. Our C-AFM measurements indicate that 

the tunnel current is uniform when the tip is scanned across micron scale areas of a flat BN 

atomic layer, indicating an absence of pinholes and defects in the BN crystal. We conclude that 

h-BN is a high quality, ultrathin, low dielectric constant barrier material, which has great 

potential for use in novel electron tunneling devices and for investigating strongly-coupled and 

narrowly-separated electrodes of different compositions (graphene, graphite or metal). Of 

particular interest is the possibility of studying the electronic properties of two closely-spaced 

graphene layers separated by a BN barrier of one or more atomic layer thicknesses. 
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Figures 

 

Fig. 1 Micrographs of two of our devices. A. An SEM micrograph of one of our Au/BN/Au 

devices (false colours). The bottom golden electrode is partly covered with 6 layers of BN 

(bluish area of irregular shape). Five top golden electrodes of different areas are then deposited 

on top of BN. Inset: schematic representation of the device. B. An optical image of one of our 

graphite/BN/graphite devices. The bottom graphite layer is shaped by reactive plasma etching 

into several stripes of 2.5µm width (horizontal purple lines). Thin BN layers have high 

transparency so the edges of BN crystallites with different numbers of layers are marked by 

black lines. Crossing of the top graphite layer (vertical purple line, 2.5µm in width) forms 

several tunneling junctions with different thicknesses of BN. Inset: schematic representation of 

the device. 



 

 

Fig. 2 Characteristic I-V curves for graphite/BN/graphite devices with different thicknesses of 

BN insulating layer. Black curve – monolayer of BN, red – bilayer, green – triple layer, blue – 

quadruple layer. Note the different scale for the four curves. Current was normalised by the 

realistic area of the tunneling barrier, which ranged 2-10 µm
2
 depending on the particular device. 

 



 

 

Fig. 3 Same as Fig. 2, just in log scale. Solid curves – experimental data, dashed lines – our 

modelling. Only one fitting parameter for all four curves was used. 

 



 

 

Fig. 4 Exponential dependence of zero-bias resistance on the thickness of BN separating graphite 

electrodes (1 to 4 layers of BN, 0.3-1.3 nm). Resistance is normalised to the area, which ranged 

2-10µm
2
 depending on the particular device. 

 



 

 

Fig. 5 Local mapping of the tunneling current through BN terraces over micron scale regions by 

C-AFM measurements. A. Schematic representation of the set-up. Graphite (the blue plane) is 

covered by several layers of BN. A conductive AFM probe is used to scan the surface and the 

tunneling current recorded as a function of the tip position. B. Topography measured by tapping-

mode AFM, the inset shows the overall region and the height profile shows that BN has a low 



roughness (<1 nm RMS). C. The leakage current measured at the same position as topography in 

B. There is little variation of leakage current on regions of the same thickness suggesting a lack 

of pin holes or other defects that would lead to spikes in the measured current. 

 


