36 research outputs found

    Lifetime and performance of the very latest microchannel-plate photomultipliers

    Full text link
    The PANDA experiment at the FAIR facility at GSI will study hadron physics using a high intensity antiproton beam of up to 15 GeV/c momentum to perform high precision spectroscopy. Two DIRC detectors with their image planes residing in an \sim1 T magnetic field will be used in the experiment. The only suitable photon detectors for both DIRCs were identified to be Microchannel-Plate Photomultipliers (MCP-PMTs). Since the aging problems of MCP-PMTs were solved recently by coating the MCPs with the so-called ALD-technique (atomic layer deposition) we are investigating devices which are significantly improved with respect to other parameters, as, e.g., the collection efficiency (CE) and the quantum efficiency (QE). The latest generation of MCP-PMTs can reach a detective quantum efficiency DQE = QE - CE of 30%. This paper will present the performance of the most advanced 53 ×\times 53 mm2^2 ALD-coated MCP-PMTs from Photonis (8 ×\times 8 and 3 ×\times 100 anodes) and Photek (8 ×\times 8 anodes), also inside the magnetic field. With a picosecond laser and a multi-hit capable DAQ system which allows read out up to 300 pixels simultaneously, parameters like darkcount rate, afterpulse probability and time resolution can be investigated as a function of incident photon position.Comment: Proceedings contribution to NDIP20 (9th Conference on New Developments in Photodetection

    Performance of the most recent Microchannel-Plate PMTs for the PANDA DIRC detectors at FAIR

    Full text link
    In the PANDA experiment at the FAIR facility at GSI two DIRC (Detection of Internally Reflected Cherenkov light) detectors will be used for π\pi/K separation up to 4 GeV/c. Due to their location in a high magnetic field and other stringent requirements like high detection efficiency, low dark count rate, radiation hardness, long lifetime and good timing, MCP-PMTs (microchannel-plate photomultiplier) were the best choice of photon sensors for the DIRC detectors in the PANDA experiment. This paper will present the performance of some of the latest 2×\times2 inch2^2 MCP-PMTs from Photek and Photonis, including the first mass production tubes for the PANDA Barrel DIRC from Photonis. Performance parameters like the collection efficiency (CE), quantum efficiency (QE), and gain homogeneity were determined. The effect of magnetic fields on some properties like gain and charge cloud width was investigated as well. Apart from that the spatial distribution of many internal parameters like time resolution, dark count rate, afterpulse ratio, charge sharing crosstalk and recoil electrons were measured simultaneously with a multihit capable DAQ system. The latest generation of Photonis MCP-PMTs shows an unexpected "escalation" effect where the MCP-PMT itself produces photons.Comment: Proceedings contribution to RICH2022 (11th International Workshop on Ring Imaging Cherenkov Detectors

    Feasibility studies for the measurement of time-like proton electromagnetic form factors from p¯ p→ μ+μ- at P ¯ ANDA at FAIR

    Get PDF
    This paper reports on Monte Carlo simulation results for future measurements of the moduli of time-like proton electromagnetic form factors, | GE| and | GM| , using the p¯ p→ μ+μ- reaction at P ¯ ANDA (FAIR). The electromagnetic form factors are fundamental quantities parameterizing the electric and magnetic structure of hadrons. This work estimates the statistical and total accuracy with which the form factors can be measured at P ¯ ANDA , using an analysis of simulated data within the PandaRoot software framework. The most crucial background channel is p¯ p→ π+π-, due to the very similar behavior of muons and pions in the detector. The suppression factors are evaluated for this and all other relevant background channels at different values of antiproton beam momentum. The signal/background separation is based on a multivariate analysis, using the Boosted Decision Trees method. An expected background subtraction is included in this study, based on realistic angular distributions of the background contribution. Systematic uncertainties are considered and the relative total uncertainties of the form factor measurements are presented

    PANDA Phase One - PANDA collaboration

    Get PDF
    The Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, provides unique possibilities for a new generation of hadron-, nuclear- and atomic physics experiments. The future antiProton ANnihilations at DArmstadt (PANDA or P¯ANDA) experiment at FAIR will offer a broad physics programme, covering different aspects of the strong interaction. Understanding the latter in the non-perturbative regime remains one of the greatest challenges in contemporary physics. The antiproton–nucleon interaction studied with PANDA provides crucial tests in this area. Furthermore, the high-intensity, low-energy domain of PANDA allows for searches for physics beyond the Standard Model, e.g. through high precision symmetry tests. This paper takes into account a staged approach for the detector setup and for the delivered luminosity from the accelerator. The available detector setup at the time of the delivery of the first antiproton beams in the HESR storage ring is referred to as the Phase One setup. The physics programme that is achievable during Phase One is outlined in this paper

    Precision resonance energy scans with the PANDA experiment at FAIR: Sensitivity study for width and line shape measurements of the X(3872)

    Get PDF
    This paper summarises a comprehensive Monte Carlo simulation study for precision resonance energy scan measurements. Apart from the proof of principle for natural width and line shape measurements of very narrow resonances with PANDA, the achievable sensitivities are quantified for the concrete example of the charmonium-like X(3872) state discussed to be exotic, and for a larger parameter space of various assumed signal cross-sections, input widths and luminosity combinations. PANDA is the only experiment that will be able to perform precision resonance energy scans of such narrow states with quantum numbers of spin and parities that differ from J P C = 1 - -

    A split-intein-based method for the efficient production of circularized nanodiscs for structural studies of membrane proteins.

    No full text
    Phospholipid nanodiscs are a native-like membrane mimetic that is suitable for structural studies of membrane proteins. Although nanodiscs of different sizes exist for various structural applications, their thermal and long-term stability can vary considerably. Covalently circularized nanodiscs are a perfect tool to overcome these limitations. Existing methods for the production of circularized nanodiscs can be time-consuming and technically demanding. Therefore, an easy in vivo approach, in which circularized membrane scaffold proteins (MSPs) can be directly obtained from Escherichia coli culture, is reported herein. Nostoc punctiforme DnaE split-intein fusions with MSPs of various lengths are used and consistently provide circularized nanodiscs in high yields. With this approach, a large variety of circularized nanodiscs, ranging from 7 to 26 nm in diameter, that are suitable for NMR spectroscopy and electron microscopy (EM) applications can be prepared. These nanodiscs are superior to those of the corresponding linear versions in terms of stability and size homogeneity, which affects the quality of NMR spectroscopy data and EM experiments. Due to their long-term stability and homogeneity, the presented small circular nanodiscs are suited for high-resolution NMR spectroscopy studies, as demonstrated with two membrane proteins of 17 or 32 kDa in size. The presented method will provide easy access to circularized nanodiscs for structural studies of membrane proteins and for applications in which a defined and stable nanodisc size is required

    Latest progress with microchannel plate PMTs

    No full text

    Towards the molecular architecture of the peroxisomal receptor docking complex

    No full text
    Import of yeast peroxisomal matrix proteins is initiated by cytosolic receptors, which specifically recognize and bind the respective cargo proteins. At the peroxisomal membrane, the cargo-loaded receptor interacts with the docking protein Pex14p that is tightly associated with Pex17p. Previous data suggest that this interaction triggers the formation of an import pore for further translocation of the cargo. The mechanistic principles, however, are unclear, mainly because structures of higher-order assemblies are still lacking. Here, using an integrative approach, we provide the structural characterization of the major components of the peroxisomal docking complex Pex14p/Pex17p, in a native bilayer environment, and reveal its subunit organization. Our data show that three copies of Pex14p and a single copy of Pex17p assemble to form a 20-nm rod-like particle. The different subunits are arranged in a parallel manner, showing interactions along their complete sequences and providing receptor binding sites on both membrane sides. The long rod facing the cytosol is mainly formed by the predicted coiled-coil domains of Pex14p and Pex17p, possibly providing the necessary structural support for the formation of the import pore. Further implications of Pex14p/Pex17p for formation of the peroxisomal translocon are discussed
    corecore