212 research outputs found

    Super star clusters in Haro 11: properties of a very young starburst and evidence for a near-infrared flux excess

    Get PDF
    We have used multiband imaging to investigate the nature of an extreme starburst environment in the nearby Lyman break galaxy analogue Haro 11 (ESO 350−IG038) by means of its stellar cluster population. The central starburst region has been observed in eight different high-resolution Hubble Space Telescope (HST) wavebands, sampling the stellar and gas components from UV to near-infrared. Photometric imaging of the galaxy was also carried out at 2.16 μm by NaCo AO instrument at the ESO Very Large Telescope. We constructed integrated spectral energy distributions (SEDs) for about 200 star clusters located in the active star-forming regions and compared them with single stellar population models (suitable for physical properties of very young cluster population) in order to derive ages, masses and extinctions of the star clusters. The cluster age distribution we recover confirms that the present starburst has lasted for 40 Myr, and shows a peak of cluster formation only 3.5 Myr old. With such an extremely young cluster population, Haro 11 represents a unique opportunity to investigate the youngest phase of the cluster formation process and evolution in starburst systems. We looked for possible relations between cluster ages, extinctions and masses. Extinction tends to diminish as a function of the cluster age, but the spread is large and reaches the highest dispersion for clusters in partial embedded phases (8000 Å which cannot be explained by simple stellar evolutionary models. Fitting SED models over all wavebands leads to systematic overestimates of cluster ages and incorrect masses for the stellar population supplying the light in these clusters. We show that the red excess affects also the HST F814W filter, which is typically used to constrain cluster physical properties. The clusters which show the red excess are younger than 40 Myr; we discuss possible physical explanations for the phenomenon. Finally, we estimate that Haro 11 has produced bound clusters at a rate almost a factor of 10 higher than the massive and regular spirals, like the Milky Way. The present cluster formation efficiency is ∼38 per cent of the galactic star formation rat

    Deep multiband surface photometry on star forming galaxies: II. A volume limited sample of 21 emission lines galaxies

    Full text link
    We present deep surface photometry of a volume--limited sample of 21 UM emission line galaxies in broadband optical UBVRI and near infra-red (NIR) HKs filters. The sample comprises 19 blue compact galaxies (BCGs) and two spirals. For some targets the exposure times are the deepest to date. For the BCG UM462 we observe a previously undetected second disk component beyond a surface brightness level of mu_B=26 mag arcsec^{-2}. This is a true low surface brightness component with central surface brightness mu_0=24.1 mag arcsec^{-2} and scale length h_r=1.5 kpc. All BCGs are dwarfs, with M_B>=-18, and very compact, with an average scale length of h_r~1 kpc. We separate the burst and host populations for each galaxy and compare them to stellar evolutionary models with and without nebular emission contribution. We also measure the A_{180} asymmetry in all filters and detect a shift from optical to NIR in the average asymmetry of the sample. This shift seems to be correlated with the morphological class of the BCGs. Using the color-asymmetry relation, we identify five BCGs in the sample as mergers, which is confirmed by their morphological class. Though clearly separated from normal galaxies in the concentration-asymmetry parameter space, we find that it is not possible to distinguish luminous starbursting BCGs from the merely star forming low luminosity BCGs.Comment: 48 pages, 39 figures, submitte

    The Red Halo Phenomenon

    Full text link
    Optical and near-IR observations of the halos of disk galaxies and blue compact galaxies have revealed a very red spectral energy distribution, which cannot easily be reconciled with a normal, metal-poor stellar population like that in the stellar halo of the Milky Way. Here, spectral evolutionary models are used to explore the consequences of these observations. We demonstrate that a stellar population of low to intermediate metallicity, but with an extremely bottom-heavy initial mass function, can explain the red halos around both types of objects. Other previously suggested explanations, like nebular emission or very metal-rich stars, are shown to fail in this respect. This indicates that, if the reported halo colours are correct, halo populations dominated by low-mass stars may be a phenomenon common to galaxies of very different Hubble types. Potential tests of this hypothesis are discussed, along with its implications for the baryonic dark matter content of galaxies.Comment: 6 pages, 3 figures, Accepted for publication in Ap

    Super star clusters in Haro 11: Properties of a very young starburst and evidence for a near-infrared flux excess

    Full text link
    We have used multi-band imaging to investigate the nature of the extreme starburst environment in Haro 11 galaxy. The central starburst region has been observed in 8 HST wavebands and at 2.16 micron at the ESO-VLT. We constructed integrated spectral energy distributions (SEDs) for about 200 star clusters and compared them with single stellar population models in order to derive ages, masses and extinctions of thestar clusters. The present starburst has lasted for 40 Myr, and shows a peak of cluster formation only 3.5 Myr old. With such an extremely young cluster population, Haro 11 represents a unique opportunity to investigate the youngest phase of the cluster formation process and evolution in starburst systems. Extinction tends to diminish as function of the cluster age, but the spread is large and for clusters in partial embedded phases ( 10^4 Msun), very young (1-3 Myr) clusters is missing, either because they are embedded inthe parental molecular cloud and heavily extinguished, or because of blending. Almost half of the cluster sample is affected by flux excesses at wavelengths 8000 \AA which cannot be explained by simple stellar evolutionary models. Fitting SED models over all wavebands leads to systematic overestimates of cluster ages and incorrect masses for the stellar population supplying the light in these clusters. We show that the red excess affects also the HST F814W filter, which is typically used to constrain cluster physical properties. The clusters which show the red excess are younger than 40 Myr; we propose possible physical explanations for the phenomenon. Finally, we estimate that Haro 11 hasproduced bound clusters at a rate almost a factor of 10 higher than the massive and regular spirals, like the Milky Way. (Abriged)Comment: Accepted for publication in MNRAS. 23 pages, 23 figure

    How the extinction of extragalactic background light affects surface photometry of galaxies, groups and clusters

    Full text link
    The faint regions of galaxies, groups and clusters hold important clues about how these objects formed, and surface photometry at optical and near-infrared wavelengths represents a powerful tool for studying such structures. Here, we identify a hitherto unrecognized problem with this technique, related to how the night sky flux is typically measured and subtracted from astronomical images. While most of the sky flux comes from regions between the observer and the target object, a small fraction - the extragalactic background light (EBL) - comes from behind. We argue that since this part of the sky flux can be subject to extinction by dust present in the galaxy/group/cluster studied, standard reduction procedures may lead to a systematic oversubtraction of the EBL. Even very small amounts of extinction can lead to spurious features in radial surface surface brightness profiles and colour maps of extended objects. We assess the likely impact of this effect on a number of topics in extragalactic astronomy where very deep surface photometry is currently attempted, including studies of stellar halos, starburst host galaxies, disc truncations and diffuse intragroup/intracluster light. We argue that EBL extinction may provide at least a partial explanation for the anomalously red colours reported for the halos of disc galaxies and the hosts of local starburst galaxies. EBL extinction effects also mimic truncations in discs with unusually high dust opacities, but are unlikely to be the cause of such features in general. Failure to account for EBL extinction can also give rise to a non-negligible underestimate of intragroup and intracluster light at the faintest surface brightness levels currently probed. (Abridged)Comment: 15 pages, 10 figures, accepted for publication in MNRA

    Unlocking the secrets of stellar haloes using combined star counts and surface photometry

    Full text link
    The stellar haloes of galaxies can currently be studied either through observations of resolved halo stars or through surface photometry. Curiously, the two methods appear to give conflicting results, as a number of surface photometry measurements have revealed integrated colours that are too red to be reconciled with the halo properties inferred from the study of resolved stars. Several explanations for this anomaly have been proposed - including dust photoluminescence, extinction of extragalactic background light and a bottom-heavy stellar initial mass function. A decisive test is, however, still lacking. Here, we explain how observations of the halo of a nearby galaxy, involving a combination of both surface photometry and bright star counts, can be used to distinguish between the proposed explanations. We derive the observational requirements for this endeavour and find that star counts in filters VI and surface photometry in filters VIJ appears to be the optimal strategy. Since the required halo star counts are already available for many nearby galaxies, the most challenging part of this test is likely to be the optical surface photometry, which requires several nights of exposure time on a 4-8 m telescope, and the near-IR surface photometry, which is most readily carried out using the upcoming James Webb Space Telescope.Comment: 14 pages, 4 figures; v.2 matches published version (minor changes only

    Three-Dimensional, Tomographic Super-Resolution Fluorescence Imaging of Serially Sectioned Thick Samples

    Get PDF
    Three-dimensional fluorescence imaging of thick tissue samples with near-molecular resolution remains a fundamental challenge in the life sciences. To tackle this, we developed tomoSTORM, an approach combining single-molecule localization-based super-resolution microscopy with array tomography of structurally intact brain tissue. Consecutive sections organized in a ribbon were serially imaged with a lateral resolution of 28 nm and an axial resolution of 40 nm in tissue volumes of up to 50 µm×50 µm×2.5 µm. Using targeted expression of membrane bound (m)GFP and immunohistochemistry at the calyx of Held, a model synapse for central glutamatergic neurotransmission, we delineated the course of the membrane and fine-structure of mitochondria. This method allows multiplexed super-resolution imaging in large tissue volumes with a resolution three orders of magnitude better than confocal microscopy
    • …
    corecore