765 research outputs found

    Dark matter from the centre of SU(N)

    Full text link
    A dark sector with non-abelian gauge symmetry provides a sound framework to justify stable dark matter (DM) candidates. We consider scalar fields charged under a SU(N)SU(N) gauge group, and show that the centre of SU(N)SU(N), the discrete subgroup ZNZ_N also known as NN-ality, can ensure the stability of scalar DM particles. We analyse in some details two minimal DM models of this class, based on SU(2)SU(2) and SU(3)SU(3), respectively. These models have non-trivial patterns of spontaneous symmetry breaking, leading to distinctive phenomenological implications. For the SU(2)SU(2) model these include a specific interplay of two DM states, with the same interactions but different masses, and several complementary DM annihilation regimes, either within the dark sector or through the Higgs portal. The SU(3)SU(3) model predicts dark radiation made of a pair of dark photons with a unique gauge coupling, as well as regimes where DM semi-annihilations become dominant and testable.Comment: 30 pages, 6 figures, version accepted for publication in Scipost Physics, 1 figure adde

    Crossover between Equilibrium and Shear-controlled Dynamics in Sheared Liquids

    Full text link
    We present a numerical simulation study of a simple monatomic Lennard-Jones liquid under shear flow, as a function of both temperature and shear rate. By investigating different observables we find that i) It exists a line in the (temperature-shear) plane that sharply marks the boarder between an ``equilibrium'' and a ``shear-controlled'' region for both the dynamic and the thermodynamic quantities; and ii) Along this line the structural relaxation time, is proportional to the inverse shear rate, i.e. to the typical time-scale introduced by the shear flow. Above the line the liquid dynamics is unaffected by the shear flow, while below it both temperature and shear rate control the particle motion.Comment: 14 pages, 5 figure

    First-Principles Semiclassical Initial Value Representation Molecular Dynamics

    Get PDF
    A method for carrying out semiclassical initial value representation calculations using first-principles molecular dynamics (FP-SC-IVR) is presented. This method can extract the full vibrational power spectrum of carbon dioxide from a single trajectory providing numerical results that agree with experiment even for Fermi resonant states. The computational demands of the method are comparable to those of classical single-trajectory calculations, while describing uniquely quantum features such as the zero-point energy and Fermi resonances. By propagating the nuclear degrees of freedom using first-principles Born-Oppenheimer molecular dynamics, the stability of the method presented is improved considerably when compared to dynamics carried out using fitted potential energy surfaces and numerical derivatives.Comment: 5 pages, 2 figures, made stylistic and clarity change

    Equilibration times in numerical simulation of structural glasses: Comparing parallel tempering and conventional molecular dynamics

    Full text link
    Generation of equilibrium configurations is the major obstacle for numerical investigation of the slow dynamics in supercooled liquid states. The parallel tempering (PT) technique, originally proposed for the numerical equilibration of discrete spin-glass model configurations, has recently been applied in the study of supercooled structural glasses. We present an investigation of the ability of parallel tempering to properly sample the liquid configuration space at different temperatures, by mapping the PT dynamics into the dynamics of the closest local potential energy minima (inherent structures). Comparing the PT equilibration process with the standard molecular dynamics equilibration process we find that the PT does not increase the speed of equilibration of the (slow) configurational degrees of freedom.Comment: 5 pages, 3 figure

    Detection of coronavirus-2 by real-time reverse transcription polymerase chain reaction in conjunctival swabs from patients with severe form of Coronavirus disease 2019 in São Paulo, Brazil

    Get PDF
    OBJECTIVES: To test conjunctival swabs from patients with laboratory-confirmed severe forms of coronavirus disease 2019 (COVID-19) for the presence of SARS-CoV-2 on real-time reverse-transcription polymerase chain reaction (rRT-PCR). METHODS: Fifty conjunctival swabs were collected from 50 in-patients with laboratory-confirmed severe forms of COVID-19 at the largest teaching hospital and referral center in Brazil (HCFMUSP, São Paulo, SP). The samples were tested for SARS-CoV-2 on rRT-PCR with the primers and probes described in the CDC protocol which amplify the region of the nucleocapsid N gene (2019_nCoV_N1 and 2019_nCoV_N2) of SARS-CoV-2 RNA and compared with naso/oropharyngeal swabs collected within 24 hours of the conjunctival swabs. RESULTS: Five conjunctival samples (10%) tested positive (amplification of the N1 and N2 primer/probe sets) while two conjunctival samples (4%) yielded inconclusive results (amplification of the N1 primer/probe set only). The naso/oropharyngeal swabs were positive for SARS-CoV-2 on rRT-PCR in 34 patients (68%), negative in 14 (28%) and inconclusive in 2 (4%). The 5 patients with positive conjunctival swabs had positive (n=2), negative (n=2) or inconclusive (n=1) naso/oropharyngeal swabs on rRT-PCR. Patients with negative or inconclusive naso/oropharyngeal swabs had the diagnosis of COVID-19 confirmed by previous positive rRT-PCR results or by serology. CONCLUSION: This is the first study to present conjunctival swab rRT-PCR results for SARS-CoV-2 in a Brazilian population. In our sample of 50 patients with severe forms of COVID-19, 10% had positive conjunctival swabs, most of which were correlated with positive naso/oropharyngeal rRT-PCR results

    Diffusion and viscosity in a supercooled polydisperse system

    Get PDF
    We have carried out extensive molecular dynamics simulations of a supercooled polydisperse Lennard-Jones liquid with large variations in temperature at a fixed pressure. The particles in the system are considered to be polydisperse both in size and mass. The temperature dependence of the dynamical properties such as the viscosity (η\eta) and the self-diffusion coefficients (DiD_i) of different size particles is studied. Both viscosity and diffusion coefficients show super-Arrhenius temperature dependence and fit well to the well-known Vogel-Fulcher-Tammann (VFT) equation. Within the temperature range investigated, the value of the Angell's fragility parameter (D 1.4\approx 1.4) classifies the present system into a strongly fragile liquid. The critical temperature for diffusion (ToDiT_o^{D_i}) increases with the size of the particles. The critical temperature for viscosity (ToηT_o^{\eta}) is larger than that for the diffusion and a sizeable deviations appear for the smaller size particles implying a decoupling of translational diffusion from viscosity in deeply supercooled liquid. Indeed, the diffusion shows markedly non-Stokesian behavior at low temperatures where a highly nonlinear dependence on size is observed. An inspection of the trajectories of the particles shows that at low temperatures the motions of both the smallest and largest size particles are discontinuous (jump-type). However, the crossover from continuous Brownian to large length hopping motion takes place at shorter time scales for the smaller size particles.Comment: Revtex4, 7 pages, 8 figure

    The Physics of the Colloidal Glass Transition

    Full text link
    As one increases the concentration of a colloidal suspension, the system exhibits a dramatic increase in viscosity. Structurally, the system resembles a liquid, yet motions within the suspension are slow enough that it can be considered essentially frozen. This kinetic arrest is the colloidal glass transition. For several decades, colloids have served as a valuable model system for understanding the glass transition in molecular systems. The spatial and temporal scales involved allow these systems to be studied by a wide variety of experimental techniques. The focus of this review is the current state of understanding of the colloidal glass transition. A brief introduction is given to important experimental techniques used to study the glass transition in colloids. We describe features of colloidal systems near and in glassy states, including tremendous increases in viscosity and relaxation times, dynamical heterogeneity, and ageing, among others. We also compare and contrast the glass transition in colloids to that in molecular liquids. Other glassy systems are briefly discussed, as well as recently developed synthesis techniques that will keep these systems rich with interesting physics for years to come.Comment: 56 pages, 18 figures, Revie

    Hepatoid carcinoma colliding with a liposarcoma of the left colon serosa presenting as an abdominal mass

    Get PDF
    BACKGROUND: Hepatoid adenocarcinoma (HAC) is a peculiar type of extrahepatic adenocarcinoma generally characterized by adenocarcinomatous and hepatocellular carcinoma (HCC)-like foci. Stomach is the most frequent site where hepatoid adenocarcinoma occurs, although it has been described in many other organs. On the other side, liposarcoma is a rare, malignant tumor that develops from fat cells. CASE PRESENTATION: We describe here a case of hepatoid carcinoma in collision with a liposarcoma of the left colon serosa in a 71-year-old man. It presented as an abdominal mass involving several organs, falsely mimicking metastatic colonic adenocarcinoma. Recognition of this entity was evident on microscopic evaluation following surgery. The patient had an objective response following liposomal antracycline chemotherapy, with a 3-year overall survival. CONCLUSION: To our knowledge, this is the first case of a hepatoid tumor colliding with a liposarcoma of the left colon serosa reported to date

    Molecular dynamics simulations of glassy polymers

    Full text link
    We review recent results from computer simulation studies of polymer glasses, from chain dynamics around the glass transition temperature Tg to the mechanical behaviour below Tg. These results clearly show that modern computer simulations are able to address and give clear answers to some important issues in the field, in spite of the obvious limitations in terms of length and time scales. In the present review we discuss the cooling rate effects, and dynamic slowing down of different relaxation processes when approaching Tg for both model and chemistry-specific polymer glasses. The impact of geometric confinement on the glass transition is discussed in detail. We also show that computer simulations are very useful tools to study structure and mechanical response of glassy polymers. The influence of large deformations on mechanical behaviour of polymer glasses in general, and strain hardening effect in particular are reviewed. Finally, we suggest some directions for future research, which we believe will be soon within the capabilities of state of the art computer simulations, and correspond to problems of fundamental interest.Comment: To apear in "Soft Matter

    Genomic characterization of biliary tract cancers identifies driver genes and predisposing mutations

    Get PDF
    Background & Aims Biliary tract cancers (BTCs) are clinically and pathologically heterogeneous and respond poorly to treatment. Genomic profiling can offer a clearer understanding of their carcinogenesis, classification and treatment strategy. We performed large-scale genome sequencing analyses on BTCs to investigate their somatic and germline driver events and characterize their genomic landscape. Methods We analyzed 412 BTC samples from Japanese and Italian populations, 107 by whole-exome sequencing (WES), 39 by whole-genome sequencing (WGS), and a further 266 samples by targeted sequencing. The subtypes were 136 intrahepatic cholangiocarcinomas (ICCs), 101 distal cholangiocarcinomas (DCCs), 109 peri-hilar type cholangiocarcinomas (PHCs), and 66 gallbladder or cystic duct cancers (GBCs/CDCs). We identified somatic alterations and searched for driver genes in BTCs, finding pathogenic germline variants of cancer-predisposing genes. We predicted cell-of-origin for BTCs by combining somatic mutation patterns and epigenetic features. Results We identified 32 significantly and commonly mutated genes including TP53 , KRAS , SMAD4 , NF1 , ARID1A , PBRM1 , and ATR , some of which negatively affected patient prognosis. A novel deletion of MUC17 at 7q22.1 affected patient prognosis. Cell-of-origin predictions using WGS and epigenetic features suggest hepatocyte-origin of hepatitis-related ICCs. Deleterious germline mutations of cancer-predisposing genes such as BRCA1 , BRCA2 , RAD51D , MLH1 , or MSH2 were detected in 11% (16/146) of BTC patients. Conclusions BTCs have distinct genetic features including somatic events and germline predisposition. These findings could be useful to establish treatment and diagnostic strategies for BTCs based on genetic information. Lay summary We here analyzed genomic features of 412 BTC samples from Japanese and Italian populations. A total of 32 significantly and commonly mutated genes were identified, some of which negatively affected patient prognosis, including a novel deletion of MUC17 at 7q22.1 . Cell-of-origin predictions using WGS and epigenetic features suggest hepatocyte-origin of hepatitis-related ICCs. Deleterious germline mutations of cancer-predisposing genes were detected in 11% of patients with BTC. BTCs have distinct genetic features including somatic events and germline predisposition
    corecore