72 research outputs found

    BYOD: Moving toward a More Mobile and Productive Workforce

    Get PDF
    In recent years there has been a personal and organizational trend toward mobility and the use of mobile technologies such as laptops, mobile phones and tablets. With this proliferation of devices, the desire to combine as many functions as possible into one device has also arisen. This concept is commonly called convergence. Generally, device convergence has been segmented between devices for work and devices for home use. Recently, however, the concept of Bring Your Own Device (BYOD) has emerged as organizations attempt to bridge the work/home divide in hopes of increasing employee productivity and reducing corporate technology costs. This paper examines BYOD projects at IBM, Cisco, Citrix, and Intel and then integrates this analysis with current literature to develop and present a BYOD Implementation Success model

    Independent Promotion of Young Talents in Satellite Development on the Full-Scale Satellite Mission SOURCE

    Get PDF
    The SOURCE mission is the first student satellite developed at the University of Stuttgart. This unique opportunity for undergraduate and graduate students is made possible by the cooperation between the Institute of Space Systems (IRS) and the Small Satellite Student Society (KSat e.V.

    On the Configuration Space of Gauge Theorie

    Full text link
    We investigate the structure of the configuration space of gauge theories and its description in terms of the set of absolute minima of certain Morse functions on the gauge orbits. The set of absolute minima that is obtained when the background connection is a pure gauge is shown to be isomorphic to the orbit space of the pointed gauge group. We also show that the stratum of irreducible orbits is geodesically convex, i.e. there are no geometrical obstructions to the classical motion within the main stratum. An explicit description of the singularities of the configuration space of SU(2) theories on a topologically simple space-time and on the lattice is obtained; in the continuum case we find that the singularities are conical and that the singular stratum is isomorphic to a Z_2 orbifold of the configuration space of electrodynamics.Comment: 22 pages [A4] in LaTeX, HD-THEP-94-11, NIKHEF-H/94-1

    A cloud platform for automating and sharing analysis of raw simulation data from high throughput polymer molecular dynamics simulations

    Full text link
    Open material databases storing hundreds of thousands of material structures and their corresponding properties have become the cornerstone of modern computational materials science. Yet, the raw outputs of the simulations, such as the trajectories from molecular dynamics simulations and charge densities from density functional theory calculations, are generally not shared due to their huge size. In this work, we describe a cloud-based platform to facilitate the sharing of raw data and enable the fast post-processing in the cloud to extract new properties defined by the user. As an initial demonstration, our database currently includes 6286 molecular dynamics trajectories for amorphous polymer electrolytes and 5.7 terabytes of data. We create a public analysis library at https://github.com/TRI-AMDD/htp_md to extract multiple properties from the raw data, using both expert designed functions and machine learning models. The analysis is run automatically with computation in the cloud, and results then populate a database that can be accessed publicly. Our platform encourages users to contribute both new trajectory data and analysis functions via public interfaces. Newly analyzed properties will be incorporated into the database. Finally, we create a front-end user interface at https://www.htpmd.matr.io for browsing and visualization of our data. We envision the platform to be a new way of sharing raw data and new insights for the computational materials science community.Comment: 21 pages, 7 figure

    Follicular fluid high density lipoprotein-associated micronutrient levels are associated with embryo fragmentation during IVF

    Get PDF
    To investigate whether follicular fluid lipid-soluble micronutrients are associated with embryo morphology parameters during IVF. Follicle fluid and oocytes were obtained prospectively from 81 women. Embryo morphology parameters were used as surrogate markers of oocyte health. HDL lipids and lipid-soluble micronutrients were analyzed by high-pressure liquid chromatography. Non-parametric bi-variate analysis and multivariable ordinal logistic regression models were employed to examine associations between biochemical and embryo morphology parameters. Follicular fluid HDL cholesterol (r = −0.47, p < 0.01), α-tocopherol (r = −0.41, p < 0.01), δ-tocopherol (r = −0.38, p < 0.05) and β-cryptoxanthine (r = −0.42, p < 0.01) are negatively correlated with embryo fragmentation. Ordinal logistic regression models indicate that a 0.1 μmol/L increase in β-cryptoxanthine, adjusted for γ-tocopherol, is associated with a 75% decrease in the cumulative odds of higher embryo fragmentation (p = 0.010). Follicular fluid HDL micronutrients may play an important role in the development of the human oocyte as evident by embryo fragmentation during IVF

    Facial Skin Coloration Affects Perceived Health of Human Faces

    Get PDF
    Numerous researchers have examined the effects of skin condition, including texture and color, on the perception of health, age, and attractiveness in human faces. They have focused on facial color distribution, homogeneity of pigmentation, or skin quality. We here investigate the role of overall skin color in determining perceptions of health from faces by allowing participants to manipulate the skin portions of color-calibrated Caucasian face photographs along CIELab color axes. To enhance healthy appearance, participants increased skin redness (a*), providing additional support for previous findings that skin blood color enhances the healthy appearance of faces. Participants also increased skin yellowness (b*) and lightness (L*), suggesting a role for high carotenoid and low melanin coloration in the healthy appearance of faces. The color preferences described here resemble the red and yellow color cues to health displayed by many species of nonhuman animals

    The degree of segmental aneuploidy measured by total copy number abnormalities predicts survival and recurrence in superficial gastroesophageal adenocarcinoma

    Get PDF
    Background: Prognostic biomarkers are needed for superficial gastroesophageal adenocarcinoma (EAC) to predict clinical outcomes and select therapy. Although recurrent mutations have been characterized in EAC, little is known about their clinical and prognostic significance. Aneuploidy is predictive of clinical outcome in many malignancies but has not been evaluated in superficial EAC. Methods: We quantified copy number changes in 41 superficial EAC using Affymetrix SNP 6.0 arrays. We identified recurrent chromosomal gains and losses and calculated the total copy number abnormality (CNA) count for each tumor as a measure of aneuploidy. We correlated CNA count with overall survival and time to first recurrence in univariate and multivariate analyses. Results: Recurrent segmental gains and losses involved multiple genes, including: HER2, EGFR, MET, CDK6, KRAS (recurrent gains); and FHIT, WWOX, CDKN2A/B, SMAD4, RUNX1 (recurrent losses). There was a 40-fold variation in CNA count across all cases. Tumors with the lowest and highest quartile CNA count had significantly better overall survival (p = 0.032) and time to first recurrence (p = 0.010) compared to those with intermediate CNA counts. These associations persisted when controlling for other prognostic variables. Significance: SNP arrays facilitate the assessment of recurrent chromosomal gain and loss and allow high resolution, quantitative assessment of segmental aneuploidy (total CNA count). The non-monotonic association of segmental aneuploidy with survival has been described in other tumors. The degree of aneuploidy is a promising prognostic biomarker in a potentially curable form of EAC. © 2014 Davison et al

    The Pneumococcal Iron Uptake Protein a (PiuA) Specifically Recognizes Tetradentate FeIIIbis- and Mono-Catechol Complexes

    Get PDF
    Streptococcus pneumoniae (Spn) is an important Gram-positive human pathogen that causes millions of infections worldwide with an increasing occurrence of antibiotic resistance. Fe acquisition is a crucial virulence determinant in Spn; further, Spn relies on exogenous FeIII-siderophore scavenging to meet nutritional Fe needs. Recent studies suggest that the human catecholamine stress hormone, norepinephrine (NE), facilitates Fe acquisition in Spn under conditions of transferrin-mediated Fe starvation. Here we show that the solute binding lipoprotein PiuA from the piu Fe acquisition ABC transporter PiuBCDA, previously described as an Fe-hemin binding protein, binds tetradentate catechol FeIII complexes, including NE and the hydrolysis products of enterobactin. Two protein-derived ligands (H238, Y300) create a coordinately-saturated FeIII complex, which parallel recent studies in the Gram-negative intestinal pathogen Campylobacter jejuni. Our in vitro studies using NMR spectroscopy and 54Fe LC-ICP-MS confirm the FeIII can move from transferrin to apo-PiuA in a NE-dependent manner. Structural analysis of PiuA FeIII-bis-catechol and GaIII-bis-catechol and GaIII-(NE)2 complexes by NMR spectroscopy reveals only localized structural perturbations in PiuA upon ligand binding, largely consistent with recent descriptions of other solute binding proteins of type II ABC transporters. We speculate that tetradentate FeIII complexes formed by mono- and bis-catechol species are important Fe sources in Gram-positive human pathogens, since PiuA functions in the same way as SstD from Staphylococcus aureus

    Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics

    Get PDF
    The assessment of oocyte quality in human in vitro fertilization (IVF) is getting increasing attention from embryologists. Oocyte selection and the identification of the best oocytes, in fact, would help to limit embryo overproduction and to improve the results of oocyte cryostorage programs. Follicular fluid (FF) is easily available during oocyte pick-up and theorically represents an optimal source on non-invasive biochemical predictors of oocyte quality. Unfortunately, however, the studies aiming to find a good molecular predictor of oocyte quality in FF were not able to identify substances that could be used as reliable markers of oocyte competence to fertilization, embryo development and pregnancy. In the last years, a well definite trend toward passing from the research of single molecular markers to more complex techniques that study all metabolites of FF has been observed. The metabolomic approach is a powerful tool to study biochemical predictors of oocyte quality in FF, but its application in this area is still at the beginning. This review provides an overview of the current knowledge about the biochemical predictors of oocyte quality in FF, describing both the results coming from studies on single biochemical markers and those deriving from the most recent studies of metabolomic
    corecore