14 research outputs found

    The cellular and synaptic architecture of the mechanosensory dorsal horn

    Get PDF
    The deep dorsal horn is a poorly characterized spinal cord region implicated in processing low-threshold mechanoreceptor (LTMR) information. We report an array of mouse genetic tools for defining neuronal components and functions of the dorsal horn LTMR-recipient zone (LTMR-RZ), a role for LTMR-RZ processing in tactile perception, and the basic logic of LTMR-RZ organization. We found an unexpectedly high degree of neuronal diversity in the LTMR-RZ: seven excitatory and four inhibitory subtypes of interneurons exhibiting unique morphological, physiological, and synaptic properties. Remarkably, LTMRs form synapses on between four and 11 LTMR-RZ interneuron subtypes, while each LTMR-RZ interneuron subtype samples inputs from at least one to three LTMR classes, as well as spinal cord interneurons and corticospinal neurons. Thus, the LTMR-RZ is a somatosensory processing region endowed with a neuronal complexity that rivals the retina and functions to pattern the activity of ascending touch pathways that underlie tactile perception

    Sequestration and Scavenging of Iron in Infection

    Get PDF
    The proliferative capability of many invasive pathogens is limited by the bioavailability of iron. Pathogens have thus developed strategies to obtain iron from their host organisms. In turn, host defense strategies have evolved to sequester iron from invasive pathogens. This review explores the mechanisms employed by bacterial pathogens to gain access to host iron sources, the role of iron in bacterial virulence, and iron-related genes required for the establishment or maintenance of infection. Host defenses to limit iron availability for bacterial growth during the acute-phase response and the consequences of iron overload conditions on susceptibility to bacterial infection are also examined. The evidence summarized herein demonstrates the importance of iron bioavailability in influencing the risk of infection and the ability of the host to clear the pathogen

    Early structural and functional defects in synapses and myelinated axons in stratum lacunosum moleculare in two preclinical models for tauopaty

    Get PDF
    The stratum lacunosum moleculare (SLM) is the connection hub between entorhinal cortex and hippocampus, two brain regions that are most vulnerable in Alzheimer’s disease. We recently identified a specific synaptic deficit of Nectin-3 in transgenic models for tauopathy. Here we defined cognitive impairment and electrophysiological problems in the SLM of Tau.P301L mice, which corroborated the structural defects in synapses and dendritic spines. Reduced diffusion of DiI from the ERC to the hippocampus indicated defective myelinated axonal pathways. Ultrastructurally, myelinated axons in the temporoammonic pathway (TA) that connects ERC to CA1 were damaged in Tau.P301L mice at young age. Unexpectedly, the myelin defects were even more severe in bigenic biGT mice that co-express GSK3β with Tau.P301L in neurons. Combined, our data demonstrate that neuronal expression of protein Tau profoundly affected the functional and structural organization of the entorhinal-hippocampal complex, in particular synapses and myelinated axons in the SLM. White matter pathology deserves further attention in patients suffering from tauopathy and Alzheimer’s disease

    Rapid quantification of insulin degludec by immunopurification combined with liquid chromatography high-resolution mass spectrometry.

    Get PDF
    Insulin degludec is an ultra-long-acting insulin analogue that is increasingly being used in diabetes due to its favourable efficacy and safety profile. Thus, there is an increasing demand for a reliable and specific analytical method to quantify insulin degludec for research, pharmaceutical industry and clinical applications. We developed and validated an automated, high-throughput method for quantification of insulin degludec in human blood samples across the expected clinical range combining immunopurification with high-resolution mass spectrometry. Validation was performed according to the requirements of the US Food and Drug Administration. The method satisfyingly met the following parameters: lower limit of quantification (120 pM), linearity, accuracy (error < 5%), precision (CV < 7.7%), selectivity, carry-over, recovery (89.7-97.2%), stability and performance in the presence of other insulin analogues. The method was successfully applied to clinical samples of patients treated with insulin degludec showing a good correlation with the administered dose (r2 = 0.78). High usability of the method is supported by the small specimen volume, automated sample processing and short analysis time. In conclusion, this reliable, easy-to-use and specific mass spectrometric insulin degludec assay offers great promise to address the current unmet need for standardized insulin analytics in academic and industrial research. Graphical Abstract

    European small-town Renewable Energy Communities: Participatory design of supporting tools as a vehicle to engage and understand local communities and their energy related concerns

    No full text
    This data set was collected in the context of the EU Horizon 2020 project LocalRes focusing on the energy transition and the involvement of citizens. Co-design workshops were held with citizens in four different demonstration sites in Europe to develop Renewable Energy Communities and introducing support tools like an application to foster this process. The aim was to gather the information regarding the interests, needs and concerns of citizens regarding the support tools and the Renewable Energy Community itself. The presented data is based on a questionnaire which was handed out during the workshops

    The BMP Coreceptor RGMb Promotes While the Endogenous BMP Antagonist Noggin Reduces Neurite Outgrowth and Peripheral Nerve Regeneration by Modulating BMP Signaling

    Get PDF
    Repulsive guidance molecule b (RGMb) is a bone morphogenetic protein (BMP) coreceptor and sensitizer of BMP signaling, highly expressed in adult dorsal root ganglion (DRG) sensory neurons. We used a murine RGMb knock-out to gain insight into the physiological role of RGMb in the DRG, and address whether RGMb-mediated modulation of BMP signaling influences sensory axon regeneration. No evidence for altered development of the PNS and CNS was detected in RGMb−/− mice. However, both cultured neonatal whole DRG explants and dissociated DRG neurons from RGMb−/− mice exhibited significantly fewer and shorter neurites than those from wild-type littermates, a phenomenon that could be fully rescued by BMP-2. Moreover, Noggin, an endogenous BMP signaling antagonist, inhibited neurite outgrowth in wild-type DRG explants from naive as well as nerve injury-preconditioned mice. Noggin is downregulated in the DRG after nerve injury, and its expression is highly correlated and inversely associated with the known regeneration-associated genes, which are induced in the DRG by peripheral axonal injury. We show that diminished BMP signaling in vivo, achieved either through RGMb deletion or BMP inhibition with Noggin, retarded early axonal regeneration after sciatic nerve crush injury. Our data suggest a positive modulatory contribution of RGMb and BMP signaling to neurite extension in vitro and early axonal regrowth after nerve injury in vivo and a negative effect of Noggin
    corecore