532 research outputs found

    cGMP Recombinant FIX for IV and Oral Hemophilia B Therapy

    Get PDF
    Three specific aims are proposed: Specific Aim # 1. Process engineer and scale-up the recovery and purification of transgenic recombinant human Factor IX. The University of Nebraska-Lincoln Biological Process Development Facility will complete process development and scale-up, and produce clinical grade materials for preclinical studies. The endpoint is a proposed final product specification to help facilitate transfer to current Good Manufacturing Practices compliant production of clinical grade material to support an Investigational New Drug filing with the United States Food and Drug Administration (FDA) leading to clinical trials. Specific Aim #2. Characterize and formulate transgenic recombinant human Factor IX for intravenous dosage, and evaluate in a hemophilia B dog model. These activities are directed toward characterization of the product important to assure the provision of safe and reproducibly effective hemostasis. The results of these investigations will help support an IND filing with the FDA. Specific Aim # 3. Develop an oral dosage form of transgenic recombinant human Factor IX, and evaluate in hemophilia B mice and dog models. Oral administration of coagulation therapy will obviate the invasiveness, discomfort, potential for opportunistic infection, and complications of storage and supplies that accompany intravenous administration. Oral dosage forms of Factor IX will thus greatly increase the proportion of the patient population that can be treated. There is also published evidence suggesting that oral administration may reduce the potential for complicating immune responses to replacement therapy, especially in patients with severe hemophilia

    Genetic Mapping of Multiple Metabolic Traits Identifies Novel Genes for Adiposity, Lipids and Insulin Secretory Capacity in Outbred Rats

    Get PDF
    Despite the successes of human genome-wide association studies, the causal genes underlying most metabolic traits remain unclear. We used outbred heterogeneous stock (HS) rats, coupled with expression data and mediation analysis, to identify quantitative trait loci (QTLs) and candidate gene mediators for adiposity, glucose tolerance, serum lipids, and other metabolic traits. Physiological traits were measured in 1519 male HS rats, with liver and adipose transcriptomes measured in over 410 rats. Genotypes were imputed from low coverage whole genome sequence. Linear mixed models were used to detect physiological and expression QTLs (pQTLs and eQTLs, respectively), employing both SNP- and haplotype-based models for pQTL mapping. Genes with cis-eQTLs that overlapped pQTLs were assessed as causal candidates through mediation analysis. We identified 14 SNP-based pQTLs and 19 haplotype-based pQTLs, of which 10 were in common. Using mediation, we identified the following genes as candidate mediators of pQTLs: Grk5 for a fat pad weight pQTL on Chr1, Krtcap3 for fat pad weight and serum lipids pQTLs on Chr6, Ilrun for a fat pad weight pQTL on Chr20 and Rfx6 for a whole pancreatic insulin content pQTL on Chr20. Furthermore, we verified Grk5 and Ktrcap3 using gene knock-down/out models, thereby shedding light on novel regulators of obesity

    Multi-Messenger Gravitational Wave Searches with Pulsar Timing Arrays: Application to 3C66B Using the NANOGrav 11-year Data Set

    Get PDF
    When galaxies merge, the supermassive black holes in their centers may form binaries and, during the process of merger, emit low-frequency gravitational radiation in the process. In this paper we consider the galaxy 3C66B, which was used as the target of the first multi-messenger search for gravitational waves. Due to the observed periodicities present in the photometric and astrometric data of the source of the source, it has been theorized to contain a supermassive black hole binary. Its apparent 1.05-year orbital period would place the gravitational wave emission directly in the pulsar timing band. Since the first pulsar timing array study of 3C66B, revised models of the source have been published, and timing array sensitivities and techniques have improved dramatically. With these advances, we further constrain the chirp mass of the potential supermassive black hole binary in 3C66B to less than (1.65±0.02)×109 M(1.65\pm0.02) \times 10^9~{M_\odot} using data from the NANOGrav 11-year data set. This upper limit provides a factor of 1.6 improvement over previous limits, and a factor of 4.3 over the first search done. Nevertheless, the most recent orbital model for the source is still consistent with our limit from pulsar timing array data. In addition, we are able to quantify the improvement made by the inclusion of source properties gleaned from electromagnetic data to `blind' pulsar timing array searches. With these methods, it is apparent that it is not necessary to obtain exact a priori knowledge of the period of a binary to gain meaningful astrophysical inferences.Comment: 14 pages, 6 figures. Accepted by Ap

    Prevention and early detection of prostate cancer

    Get PDF
    This Review was sponsored and funded by the International Society of Cancer Prevention (ISCaP), the European Association of Urology (EAU), the National Cancer Institute, USA (NCI) (grant number 1R13CA171707-01), Prostate Cancer UK, Cancer Research UK (CRUK) (grant number C569/A16477), and the Association for International Cancer Research (AICR

    Data Publication with the Structural Biology Data Grid Supports Live Analysis

    Get PDF
    Access to experimental X-ray diffraction image data is fundamental for validation and reproduction of macromolecular models and indispensable for development of structural biology processing methods. Here, we established a diffraction data publication and dissemination system, Structural Biology Data Grid (SBDG; data.sbgrid.org), to preserve primary experimental data sets that support scientific publications. Data sets are accessible to researchers through a community driven data grid, which facilitates global data access. Our analysis of a pilot collection of crystallographic data sets demonstrates that the information archived by SBDG is sufficient to reprocess data to statistics that meet or exceed the quality of the original published structures. SBDG has extended its services to the entire community and is used to develop support for other types of biomedical data sets. It is anticipated that access to the experimental data sets will enhance the paradigm shift in the community towards a much more dynamic body of continuously improving data analysis

    Impact of short-term dietary modification on postprandial oxidative stress

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have recently reported that short-term (21-day) dietary modification in accordance with a stringent vegan diet (i.e., a Daniel Fast) lowers blood lipids as well as biomarkers of oxidative stress. However, this work only involved measurements obtained in a fasted state. In the present study, we determined the postprandial response to a high-fat milkshake with regards to blood triglycerides (TAG), biomarkers of oxidative stress, and hemodynamic variables before and following a 21-day Daniel Fast.</p> <p>Methods</p> <p>Twenty-two subjects (10 men and 12 women; aged 35 ± 3 years) completed a 21-day Daniel Fast. To induce oxidative stress, a milkshake (fat = 0.8 g·kg<sup>-1</sup>; carbohydrate = 1.0 g·kg<sup>-1</sup>; protein = 0.25 g·kg<sup>-1</sup>) was consumed by subjects on day one and day 22 in a rested and 12-hour fasted state. Before and at 2 and 4 h after consumption of the milkshake, heart rate (HR) and blood pressure were measured. Blood samples were also collected at these times and analyzed for TAG, malondialdehyde (MDA), hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), advanced oxidation protein products (AOPP), nitrate/nitrite (NOx), and Trolox Equivalent Antioxidant Capacity (TEAC).</p> <p>Results</p> <p>A time effect was noted for HR (<it>p </it>= 0.006), with values higher at 2 hr post intake of the milkshake as compared to pre intake (<it>p </it>< 0.05). Diastolic blood pressure was lower post fast as compared to pre fast (<it>p </it>= 0.02), and a trend for lower systolic blood pressure was noted (<it>p </it>= 0.07). Time effects were noted for TAG (<it>p </it>= 0.001), MDA (<it>p </it>< 0.0001), H<sub>2</sub>O<sub>2 </sub>(<it>p </it>< 0.0001), AOPP (<it>p </it>< 0.0001), and TEAC (<it>p </it>< 0.0001); all concentrations were higher at 2 h and 4 h post intake compared to pre intake, except for TEAC, which was lower at these times (<it>p </it>< 0.05). A condition effect was noted for NOx (<it>p </it>= 0.02), which was higher post fast as compared to pre fast. No pre/post fast × time interactions were noted (<it>p </it>> 0.05), with the area under the curve from pre to post fast reduced only slightly for TAG (11%), MDA (11%), H<sub>2</sub>O<sub>2 </sub>(8%), and AOPP (12%), with a 37% increase noted for NOx.</p> <p>Conclusion</p> <p>Partaking in a 21-day Daniel Fast does not result in a statistically significant reduction in postprandial oxidative stress. It is possible that a longer time course of adherence to the Daniel Fast eating plan may be needed to observe significant findings.</p

    A Genetic Risk Score to Personalize Prostate Cancer Screening, Applied to Population Data

    Get PDF
    Background: A polygenic hazard score (PHS), the weighted sum of 54 SNP genotypes, was previously validated for association with clinically significant prostate cancer and for improved prostate cancer screening accuracy. Here, we assess the potential impact of PHS-informed screening. / Methods: United Kingdom population incidence data (Cancer Research United Kingdom) and data from the Cluster Randomized Trial of PSA Testing for Prostate Cancer were combined to estimate age-specific clinically significant prostate cancer incidence (Gleason score ≥7, stage T3–T4, PSA ≥10, or nodal/distant metastases). Using HRs estimated from the ProtecT prostate cancer trial, age-specific incidence rates were calculated for various PHS risk percentiles. Risk-equivalent age, when someone with a given PHS percentile has prostate cancer risk equivalent to an average 50-year-old man (50-year-standard risk), was derived from PHS and incidence data. Positive predictive value (PPV) of PSA testing for clinically significant prostate cancer was calculated using PHS-adjusted age groups. / Results: The expected age at diagnosis of clinically significant prostate cancer differs by 19 years between the 1st and 99th PHS percentiles: men with PHS in the 1st and 99th percentiles reach the 50-year-standard risk level at ages 60 and 41, respectively. PPV of PSA was higher for men with higher PHS-adjusted age. / Conclusions: PHS provides individualized estimates of risk-equivalent age for clinically significant prostate cancer. Screening initiation could be adjusted by a man's PHS. / Impact: Personalized genetic risk assessments could inform prostate cancer screening decisions

    A meta-analysis of individual participant data reveals an association between circulating levels of IGF-I and prostate cancer risk

    Get PDF
    The role of insulin-like growth factors (IGF) in prostate cancer development is not fully understood. To investigate the association between circulating concentrations of IGFs (IGF-I, IGF-II, IGFBP-1, IGFBP-2, and IGFBP-3) and prostate cancer risk, we pooled individual participant data from 17 prospective and two cross-sectional studies, including up to 10,554 prostate cancer cases and 13,618 control participants. Conditional logistic regression was used to estimate the ORs for prostate cancer based on the study-specific fifth of each analyte. Overall, IGF-I, IGF-II, IGFBP-2, and IGFBP-3 concentrations were positively associated with prostate cancer risk (Ptrend all ≤ 0.005), and IGFBP-1 was inversely associated weakly with risk (Ptrend = 0.05). However, heterogeneity between the prospective and cross-sectional studies was evident (Pheterogeneity = 0.03), unless the analyses were restricted to prospective studies (with the exception of IGF-II, Pheterogeneity = 0.02). For prospective studies, the OR for men in the highest versus the lowest fifth of each analyte was 1.29 (95% confidence interval, 1.16-1.43) for IGF-I, 0.81 (0.68-0.96) for IGFBP-1, and 1.25 (1.12-1.40) for IGFBP-3. These associations did not differ significantly by time-to-diagnosis or tumor stage or grade. Aftermutual adjustment for each of the other analytes, only IGF-I remained associated with risk. Our collaborative study represents the largest pooled analysis of the relationship between prostate cancer risk and circulating concentrations of IGF-I, providing strong evidence that IGF-I is highly likely to be involved in prostate cancer development.</p
    corecore