169 research outputs found

    A programmable, multi-format photonic transceiver platform enabling flexible optical networks

    Get PDF
    Development of programmable photonic devices for future flexible optical networks is ongoing. To this end, an innovative, multi-format QAM transmitter design is presented. It comprises a segmented-electrode InP IQ-MZM to be fabricated in InP, which can be directly driven by low-power CMOS logic. Arbitrary optical QAM format generation is made possible using only binary electrical signals, without the need for high-performance DACs and high-swing linear drivers. The concept enables a host of Tx-side DSP functionality, including the spectral shaping needed for Nyquist-WDM system concepts. In addition, we report on the development of an optical channel MUX/DEMUX, based on arrays of microresonator filters with reconfigurable bandwidths and center wavelengths. The device is intended for operation with multi-format flexible transceivers, enabling Dense (D)WDM superchannel aggregation and arbitrary spectral slicing in the context of a flexible grid environment

    ISO LWS Spectroscopy of M82: A Unified Evolutionary Model

    Get PDF
    We present the first complete far-infrared spectrum (43 to 197 um) of M82, the brightest infrared galaxy in the sky, taken with the Long Wavelength Spectrometer of the Infrared Space Observatory (ISO). We detected seven fine structure emission lines, [OI] 63 and 145 um, [OIII] 52 and 88 um, [NII] 122 um, [NIII] 57 um and [CII] 158 um, and fit their ratios to a combination starburst and photo-dissociation region (PDR) model. The best fit is obtained with HII regions with n = 250 cm^{-3} and an ionization parameter of 10^{-3.5} and PDRs with n = 10^{3.3} cm^{-3} and a far-ultraviolet flux of G_o = 10^{2.8}. We applied both continuous and instantaneous starburst models, with our best fit being a 3-5 Myr old instantaneous burst model with a 100 M_o cut-off. We also detected the ground state rotational line of OH in absorption at 119.4 um. No excited level OH transitions are apparent, indicating that the OH is almost entirely in its ground state with a column density ~ 4x10^{14} cm^{-2}. The spectral energy distribution over the LWS wavelength range is well fit with a 48 K dust temperature and an optical depth, tau_{Dust} proportional to lambda^{-1}.Comment: 23 pages, 4 figures, accepted by ApJ, Feb. 1, 199

    Does the Milky Way Produce a Nuclear Galactic Wind?

    Full text link
    We detect high-velocity absorbing gas using Hubble Space Telescope and Far Ultraviolet Spectroscopic Explorer medium resolution spectroscopy along two high-latitude AGN sight lines (Mrk 1383 and PKS 2005-489) above and below the Galactic Center (GC). These absorptions are most straightforwardly interpreted as a wind emanating from the GC which does not escape from the Galaxy's gravitational potential. Spectra of four comparison B stars are used to identify and remove foreground velocity components from the absorption-line profiles of O VI, N V, C II, C III, C IV, Si II, Si III, and Si IV. Two high-velocity (HV) absorption components are detected along each AGN sight line, three redshifted and one blueshifted. Assuming that the four HV features trace a large-scale Galactic wind emanating from the GC, the blueshifted absorber is falling toward the GC at a velocity of 250 +/- 20 km/s, which can be explained by "Galactic fountain" material that originated in a bound Galactic wind. The other three absorbers represent outflowing material; the largest derived outflow velocity is +250 +/- 20 km/s, which is only 45% of the velocity necessary for the absorber to escape from its current position in the Galactic gravitational potential. All four HV absorbers are found to reach the same maximum height above the Galactic plane (|z_max| = 12 +/- 1 kpc), implying that they were all ejected from the GC with the same initial velocity. The derived metallicity limits of >10-20% Solar are lower than expected for material recently ejected from the GC unless these absorbers also contain significant amounts of hotter gas in unseen ionization stages.Comment: 39 pages, 3 figures, ApJ accepte

    Road2CPS priorities and recommendations for research and innovation in cyber-physical systems

    Get PDF
    This document summarises the findings of the Road2CPS project, co-financed by the European Commission under the H2020 Research and Innovation Programme, to develop a roadmap and recommendations for strategic action required for future deployment of Cyber-Physical Systems (CPS). The term Cyber-Physical System describes hardware-software systems, which tightly couple the physical world and the virtual world. They are established from networked embedded systems that are connected with the outside world through sensors and actuators and have the capability to collaborate, adapt, and evolve. In the ARTEMIS Strategic Research Agenda 2016, CPS are described as ‘Embedded Intelligent ICT Systems’ that make products smarter, more interconnected, interdependent, collaborative, and autonomous. In the future world of CPS, a huge number of devices connected to the physical world will be able to exchange data with each other, access web services, and interact with people. Moreover, information systems will sense, monitor and even control the physical world via Cyber-Physical Systems and the Internet of Things (HiPEAC Vision 2015). Cyber-Physical Systems find their application in many highly relevant areas to our society: multi-modal transport, health, smart factories, smart grids and smart cities amongst others. The deployment of Cyber-Physical Systems (CPS) is expected to increase substantially over the next decades, holding great potential for novel applications and innovative product development. Digital technologies have already pervaded day-to-day life massively, affecting all kinds of interactions between humans and their environment. However, the inherent complexity of CPSs, as well as the need to meet optimised performance and comply with essential requirements like safety, privacy, security, raises many questions that are currently being explored by the research community. Road2CPS aims at accelerating uptake and implementation of these efforts. The Road2CPS project identifying and analysing the relevant technology fields and related research priorities to fuel the development of trustworthy CPS, as well as the specific technologies, needs and barriers for a successful implementation in different application domains and to derive recommendations for strategic action. The document at hand was established through an interactive, community-based approach, involving over 300 experts from academia, industry and policy making through a series of workshops and consultations. Visions and priorities of recently produced roadmaps in the area of CPS, IoT (Internet of Things), SoS (System-of-Systems) and FoF (Factories of the Future) were discussed, complemented by sharing views and perspectives on CPS implementation in application domains, evolving multi-sided eco-systems as well as business and policy related barriers, enablers and success factors. From the workshops and accompanying activities recommendations for future research and innovation activities were derived and topics and timelines for their implementation proposed. Amongst the technological topics, and related future research priorities ‘integration, interoperability, standards’ ranged highest in all workshops. The topic is connected to digital platforms and reference architectures, which have already become a key priority theme for the EC and their Digitisation Strategy as well as the work on the right standards to help successful implementation of CPSs. Other themes of very high technology/research relevance revealed to be ‘modelling and simulation’, ‘safety and dependability’, ‘security and privacy’, ‘big data and real-time analysis’, ‘ubiquitous autonomy and forecasting’ as well as ‘HMI/human machine awareness’. Next to this, themes emerged including ‘decision making and support’, ‘CPS engineering (requirements, design)’, ‘CPS life-cycle management’, ‘System-of-Systems’, ‘distributed management’, ‘cognitive CPS’, ‘emergence, complexity, adaptability and flexibility’ and work on the foundations of CPS and ‘cross-disciplinary research/CPS Science’

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Military Retention Incentives: Evidence from the Air Force Selective Reenlistment Bonus

    Get PDF
    The limited lateral entry and rigid pay structure for U.S. military personnel present challenges in retaining skilled individuals who have attractive options in the civilian labor market. One tool the services use to address this challenge is the Selective Reenlistment Bonus (SRB), which offers eligible personnel with particular skills a substantial cash bonus upon reenlistment. However, the sequential nature of the bonus offer and reenlistment process limits the ability to adjust manpower quickly, raising interest in research that estimates the effect of the SRB on retention. While this literature has acknowledged challenges including potential endogeneity of bonus levels, attrition, and reenlistment eligibility, many studies do not address these concerns adequately. This paper uses a comprehensive panel data set on Air Force enlisted personnel to estimate the effect of the SRB on retention rates. We exploit variation in bonus levels within skill groups, control for civilian labor market conditions, and model reenlistment eligibility to avoid common assumptions that lead to biased impact estimates. We find substantial heterogeneity in the effect of the bonus, with the largest effects on first-term service members and those whose skills have not historically received a substantial bonus. We also find evidence that the bonus affects the timing of reenlistment decisions in addition to their frequency

    SIGNATURE: A workbench for gene expression signature analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The biological phenotype of a cell, such as a characteristic visual image or behavior, reflects activities derived from the expression of collections of genes. As such, an ability to measure the expression of these genes provides an opportunity to develop more precise and varied sets of phenotypes. However, to use this approach requires computational methods that are difficult to implement and apply, and thus there is a critical need for intelligent software tools that can reduce the technical burden of the analysis. Tools for gene expression analyses are unusually difficult to implement in a user-friendly way because their application requires a combination of biological data curation, statistical computational methods, and database expertise.</p> <p>Results</p> <p>We have developed SIGNATURE, a web-based resource that simplifies gene expression signature analysis by providing software, data, and protocols to perform the analysis successfully. This resource uses Bayesian methods for processing gene expression data coupled with a curated database of gene expression signatures, all carried out within a GenePattern web interface for easy use and access.</p> <p>Conclusions</p> <p>SIGNATURE is available for public use at <url>http://genepattern.genome.duke.edu/signature/</url>.</p

    Mammalian Neurogenesis Requires Treacle-Plk1 for Precise Control of Spindle Orientation, Mitotic Progression, and Maintenance of Neural Progenitor Cells

    Get PDF
    The cerebral cortex is a specialized region of the brain that processes cognitive, motor, somatosensory, auditory, and visual functions. Its characteristic architecture and size is dependent upon the number of neurons generated during embryogenesis and has been postulated to be governed by symmetric versus asymmetric cell divisions, which mediate the balance between progenitor cell maintenance and neuron differentiation, respectively. The mechanistic importance of spindle orientation remains controversial, hence there is considerable interest in understanding how neural progenitor cell mitosis is controlled during neurogenesis. We discovered that Treacle, which is encoded by the Tcof1 gene, is a novel centrosome- and kinetochore-associated protein that is critical for spindle fidelity and mitotic progression. Tcof1/Treacle loss-of-function disrupts spindle orientation and cell cycle progression, which perturbs the maintenance, proliferation, and localization of neural progenitors during cortical neurogenesis. Consistent with this, Tcof1+/− mice exhibit reduced brain size as a consequence of defects in neural progenitor maintenance. We determined that Treacle elicits its effect via a direct interaction with Polo-like kinase1 (Plk1), and furthermore we discovered novel in vivo roles for Plk1 in governing mitotic progression and spindle orientation in the developing mammalian cortex. Increased asymmetric cell division, however, did not promote increased neuronal differentiation. Collectively our research has therefore identified Treacle and Plk1 as novel in vivo regulators of spindle fidelity, mitotic progression, and proliferation in the maintenance and localization of neural progenitor cells. Together, Treacle and Plk1 are critically required for proper cortical neurogenesis, which has important implications in the regulation of mammalian brain size and the pathogenesis of congenital neurodevelopmental disorders such as microcephaly

    The bZIP Transcription Factor Rca1p Is a Central Regulator of a Novel CO2 Sensing Pathway in Yeast

    Get PDF
    Like many organisms the fungal pathogen Candida albicans senses changes in the environmental CO2 concentration. This response involves two major proteins: adenylyl cyclase and carbonic anhydrase (CA). Here, we demonstrate that CA expression is tightly controlled by the availability of CO2 and identify the bZIP transcription factor Rca1p as the first CO2 regulator of CA expression in yeast. We show that Rca1p upregulates CA expression during contact with mammalian phagocytes and demonstrate that serine 124 is critical for Rca1p signaling, which occurs independently of adenylyl cyclase. ChIP-chip analysis and the identification of Rca1p orthologs in the model yeast Saccharomyces cerevisiae (Cst6p) point to the broad significance of this novel pathway in fungi. By using advanced microscopy we visualize for the first time the impact of CO2 build-up on gene expression in entire fungal populations with an exceptional level of detail. Our results present the bZIP protein Rca1p as the first fungal regulator of carbonic anhydrase, and reveal the existence of an adenylyl cyclase independent CO2 sensing pathway in yeast. Rca1p appears to regulate cellular metabolism in response to CO2 availability in environments as diverse as the phagosome, yeast communities or liquid culture
    corecore