43 research outputs found

    Synthesis of high molecular weight poly(p-benzamide)s

    Get PDF
    The polymerization of aromatic para-amino acid ester derivatives was studied using model compounds. Mechanistic and kinetic experiments led to the discovery of some side reactions. Finally, high molecular weight poly(p-benzamide)s were synthesized and characterized. The use of highly reactive pentafluorophenol ester lead to polymers up to molecular weights of around 50 000 Da. Poly(benzamides) carrying both N-alkyl or N-benzyl groups on the amine could be polymerized to high molecular weight

    Synthesis of High Molecular Weight Poly(pbenzamide)s

    Full text link

    Facile synthesis of a high molecular weight amphiphilic aramid–ROMP block copolymer

    Get PDF
    Herein we report the facile synthesis of an amphiphilic rod–coil block copolymer obtained by the coupling of an amine-terminated poly(dimethylpropylamine norbornene imide) (PDMAPNI) and a pentafluorophenol ester-terminated poly(dimethoxybenzyl p-aminobenzoate) (PAram). Postpolymerization amide N- deprotection of the block copolymer yielded a strongly aggregating water-soluble rod– coil copolymer. Transmission electron microscopy revealed the formation of large ribbonlike aggregates with sizes up to 50 nm in thickness and 300 nm in length

    Rituximab in B-Cell Hematologic Malignancies: A Review of 20 Years of Clinical Experience

    Get PDF
    Rituximab is a human/murine, chimeric anti-CD20 monoclonal antibody with established efficacy, and a favorable and well-defined safety profile in patients with various CD20-expressing lymphoid malignancies, including indolent and aggressive forms of B-cell non-Hodgkin lymphoma. Since its first approval 20 years ago, intravenously administered rituximab has revolutionized the treatment of B-cell malignancies and has become a standard component of care for follicular lymphoma, diffuse large B-cell lymphoma, chronic lymphocytic leukemia, and mantle cell lymphoma. For all of these diseases, clinical trials have demonstrated that rituximab not only prolongs the time to disease progression but also extends overall survival. Efficacy benefits have also been shown in patients with marginal zone lymphoma and in more aggressive diseases such as Burkitt lymphoma. Although the proven clinical efficacy and success of rituximab has led to the development of other anti-CD20 monoclonal antibodies in recent years (e.g., obinutuzumab, ofatumumab, veltuzumab, and ocrelizumab), rituximab is likely to maintain a position within the therapeutic armamentarium because it is well established with a long history of successful clinical use. Furthermore, a subcutaneous formulation of the drug has been approved both in the EU and in the USA for the treatment of B-cell malignancies. Using the wealth of data published on rituximab during the last two decades, we review the preclinical development of rituximab and the clinical experience gained in the treatment of hematologic B-cell malignancies, with a focus on the well-established intravenous route of administration. This article is a companion paper to A. Davies, et al., which is also published in this issue

    One-pot synthesis and AFM imaging of a triangular aramide macrocycle

    Get PDF
    Macrocyclizations in exceptionally good yields were observed during the self-condensation of N-benzylated phenyl p-aminobenzoates in the presence of LiHMDS to yield three-membered cyclic aramides that adopt a triangular shape. An ortho-alkyloxy side chain on the N-benzyl protecting group is necessary for the macrocyclization to occur. Linear polymers are formed exclusively in the absence of this Li-chelating group. A model that explains the lack of formation of other cyclic congeners and the demand for an N-(o-alkoxybenzyl) protecting group is provided on the basis of DFT calculations. High-resolution AFM imaging of the prepared molecular triangles on a calcite(10.4) surface shows individual molecules arranged in groups of four due to strong surface templating effects and hydrogen bonding between the molecular triangles

    Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia

    Get PDF
    Background: chronic lymphocytic leukemia (CLL) primarily affects older persons who often have coexisting conditions in addition to disease-related immunosuppression and myelosuppression. We conducted an international, open-label, randomized phase 3 trial to compare two oral agents, ibrutinib and chlorambucil, in previously untreated older patients with CLL or small lymphocytic lymphoma. Methods: we randomly assigned 269 previously untreated patients who were 65 years of age or older and had CLL or small lymphocytic lymphoma to receive ibrutinib or chlorambucil. The primary end point was progression-free survival as assessed by an independent review committee. Results: the median age of the patients was 73 years. During a median follow-up period of 18.4 months, ibrutinib resulted in significantly longer progression-free survival than did chlorambucil (median, not reached vs. 18.9 months), with a risk of progression or death that was 84% lower with ibrutinib than that with chlorambucil (hazard ratio, 0.16; P<0.001). Ibrutinib significantly prolonged overall survival; the estimated survival rate at 24 months was 98% with ibrutinib versus 85% with chlorambucil, with a relative risk of death that was 84% lower in the ibrutinib group than in the chlorambucil group (hazard ratio, 0.16; P=0.001). The overall response rate was higher with ibrutinib than with chlorambucil (86% vs. 35%, P<0.001). The rates of sustained increases from baseline values in the hemoglobin and platelet levels were higher with ibrutinib. Adverse events of any grade that occurred in at least 20% of the patients receiving ibrutinib included diarrhea, fatigue, cough, and nausea; adverse events occurring in at least 20% of those receiving chlorambucil included nausea, fatigue, neutropenia, anemia, and vomiting. In the ibrutinib group, four patients had a grade 3 hemorrhage and one had a grade 4 hemorrhage. A total of 87% of the patients in the ibrutinib group are continuing to take ibrutinib. Conclusions: ibrutinib was superior to chlorambucil in previously untreated patients with CLL or small lymphocytic lymphoma, as assessed by progression-free survival, overall survival, response rate, and improvement in hematologic variables. (Funded by Pharmacyclics and others; RESONATE-2 ClinicalTrials.gov number, NCT01722487.)

    Polymer brush interfaces for protein biosensing prepared by surface-initiated controlled radical polymerization

    No full text
    Thin polymer films that are able to bind proteins are of great relevance for a wide variety of biosensor and biochip applications. Some of these applications require films that have high protein binding capacities while others call for surfaces that allow to control the orientation and preserve the biological activity of the immobilized proteins. Designing protein binding polymer interfaces with properties that are tailored for a specific biosensor or biochip configuration is a creative challenge that provides a host of possibilities to put the assets of modern controlled radical polymerization techniques in practical, technological use. For the preparation of protein binding polymer interfaces, surface-initiated controlled radical polymerization techniques are very attractive since they allow good control over the molecular weight, architecture, grafting density and functionality of the resulting surface-attached polymer assemblies, which are typically referred to as polymer brushes. This review article presents an overview of polymer brush films prepared via surface-initiated controlled radical polymerization, which have been designed as protein binding interfaces. The focus of this article will be on the protein immobilization chemistries that have been explored and the underlying polymer chemistry that is needed to generate these films and control their properties. For the immobilization of proteins on polymer brush films, two principal approaches can be followed; (i) covalent and (ii) non-covalent immobilization. For each of these main approaches an overview of the different polymer brush chemistries will be presented that can be used to covalently or non-covalently bind proteins
    corecore