18 research outputs found

    Depleted uranium is not toxic to rat brain endothelial (RBE4) cells

    Get PDF
    Abstract: Studies on Gulf War veterans with depleted uranium (DU) fragments embedded in their soft tissues have led to suggestions of possible DU-induced neurotoxicity. We investigated DU uptake into cultured rat brain endothelial cells (RBE4). Following the determination that DU readily enters RBE4 cells, cytotoxic effects were analyzed using assays for cell volume increase, heat shock protein 90 (Hsp90) expression, 3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) reduction, and lactate dehydrogenase (LDH) activity. The results of these studies show that uptake of the U 3 O 8 uranyl chloride form of DU into RBE4 cells is efficient, but there are little or no resulting cytotoxic effects on these cells as detected by common biomarkers. Thus, the present experimental paradigm is rather reassuring and provides no indication for overt cytotoxicity in endothelial cells exposed to DU. Index Entries: Depleted uranium (DU); heavey metal toxicity; blood-brain barrier; endothelium. Article: INTRODUCTION Depleted uranium (DU) is a component of military munitions and is therefore the subject of important toxicity studies. Specifically, the possibility of DU neurotoxicity is under investigation. DU is a dense heavy metal used without reserve in many military applications. Chemically similar to natural uranium, but depleted of much of the radioactivity of the 235 U and 234 U isotopes, DU is a low-specific-activity metal that has several advantages for use as weapons material. Neurotoxicity could potentially arise from the chemical or radioactive properties of DU, and the level of neurotoxicity is as yet undetermined (1-3). Gulf War veterans with DU fragments embedded in their soft tissues were studied and the results suggested that there might be DU-associated effects on behavior and cognition (1-4). Rats embedded with DU fragments accumulated uranium in a range of tissues, with early levels highest in the kidney and a gradual increase in bone accumulation. Brain tissues were found to have far lower levels, with the hippocampus showing high levels among the brain regions following physiologically relevant exposures and cerebellum accumulating the highest levels upon extremely high exposure levels For a blood-borne contaminant to cause neurotoxicity, it must first cross the blood-brain barrier (BBB). This barrier protects the central nervous system (CNS) from toxicants in the blood, and its ability to protect against metal neurotoxicity was reviewed by Zheng et al. (7). The capillaries of the brain are lined with endothelial cells acting as the first line of defense in the BBB. The high degree of tightness of the junctions that link the endothelial cells virtually prevents any paracellular passage from occurring in physiological conditions. In addition, several transport proteins can increase the brain-to-blood efflux of various compounds (e.g., Pglycoproteins or multidrug resistance proteins [MDR] of the ATP-binding cassette [ABC]) (7). The molecula

    Airborne manganese exposure differentially affects end points of oxidative stress in an age and sex-dependent

    No full text
    We assessed biochemical end points indicative of oxidative stress in five brain regions: cerebellum, hippocampus, hypothalamus, olfactory bulb, and striatum. Glutamine synthetase (GS) protein levels, metallothionein (MT) and GS mRNA levels, and total glutathione (GSH) levels were determined for all five regions. Although most brain regions in the three groups of animals were unaffected by manganese exposure in terms of GS protein levels, there was significantly increased protein (p<0.05) in the hippocampus and decreased protein in the hypothalamus of young male rats exposed to manganese phosphate as well as in the aged rats exposed to 0.1 mg/m 3 MnSO 4 . Conversely, GS protein was elevated in the olfactory bulb of females exposed to the high dose of MnSO 4 . Statistically significant decreases (p<0.05) in MT and GS mRNA as a result of manganese exposure were observed in the cerebellum, olfactory bulb, and hippocampus in the young male rats, in the hypothalamus in the young female rats, and in the hippocampus in the senescent males. Total GSH levels significantly (p<0.05) decreased in the olfactory bulb of manganese exposed young male rats and increased in the olfactory bulb of female rats exposed to manganese. Both the aged and young female rats had significantly decreased (p<0.05) GSH in the striatum resulting from manganese inhalation. The old male rats also had depleted GSH levels in the cerebellum and hypothalamus as a result of the 0.1-mg/m 3 manganese phosphate exposure. These results demonstrate that age and sex are variables that must be considered when assessing the neurotoxicity of manganese

    Longitudinal T1 relaxation rate (R1) captures changes in short-term Mn exposure in welders

    No full text
    OBJECTIVES: We demonstrated recently that the T1 relaxation rate (R1) captured short-term Mn exposure in welders with chronic, relatively low exposure levels in a cross-sectional study. In the current study, we used a longitudinal design to examine whether R1 values reflect the short-term dynamics of Mn exposure. METHODS: Twenty-nine welders were evaluated at baseline and 12 months. Occupational questionnaires estimated short-term welding exposure using welding hours in the 90 days prior to each study visit (HrsW(90)). In addition, blood Mn levels, the pallidal index (PI; globus pallidus T1-weighted intensity (T1WI)/frontal white matter T1WI), and R1 values in brain regions of interest (ROIs) were determined as Mn biomarkers at each visit. Associations between changes in estimated welding exposure and changes in purported Mn biomarkers were assessed by Spearman’s correlations with adjustment for age and baseline R1, HrsW(90), and blood Mn values. RESULTS: Changes in welding hours (HrsW(90): the short-term welding exposure estimate), was associated significantly with changes in R1 values in the putamen (r=0.541, p=0.005), caudate (R=0.453, p=0.023), globus pallidus (R=0.430, p=0.032), amygdala (R=0.461, p=0.020), and hippocampus (R=0.447, p=0.025), but not with changes in blood Mn levels or the PI. DISCUSSION: Changes in R1 values correlated with changes in the short-term welding exposure estimate, but not with more traditional measures of Mn exposure (blood Mn levels or PI). These results suggest that R1 may serve as a useful marker to capture the short-term dynamics in Mn brain accumulation related to welding exposure
    corecore