258 research outputs found

    Development of a dental handpiece angle correction device

    Get PDF
    Background Preparation of a uniform angle of walls is essential for making an ideal convergence angle in fixed prosthodontics. We developed a de novo detachable angle-correction apparatus for dental handpiece drills that could help the ideal tooth preparation. Methods We utilized a gyro sensor to measure the angular velocities to calculate the slope of an object by integrating the values, acceleration sensor to calculate the slope of an object by measuring the acceleration relative to gravity, and Kalman filter algorithm. Converting the angulation of the handpiece body to its drill part could be performed by a specific matrix formulation set on two reference points (2° and 6°). A flexible printed circuit board was used to minimize the size of the device. For convergence angle investigation, 16 volunteers were divided randomly into two groups for performing tooth preparation on a mandibular first molar resin tooth. All abutments were scanned by a 3D scanner (D700Âź, 3Shape Co., Japan), the convergence angle and tooth axis deviation were analyzed by a CAD program (SolidWorks 2013Âź, Dassault Systems Co., USA) with statistical analysis by Wilcoxon signed-rank test (α = 0.05) using SPSS statistical software (Version 16.0, SPSS Inc.). Results This device successfully maintained the stable zero point (less than 1° deviation) at different angles (0°, 30°, 60°, 80°) for the first 30 min. In single tooth preparation, without this apparatus, the average bucco-lingual convergence angle was 20.26° (SD 7.85), and the average mesio–distal (MD) convergence angle was 17.88° (SD 7.64). However, the use of this apparatus improved the average BL convergence angle to 13.21° (SD 4.77) and the average MD convergence angle to 10.79° (SD 4.48). The angle correction device showed a statistically significant effect on reducing the convergence angle of both directions regardless of the order of the directions. Conclusions The angle correction device developed in this study is capable of guiding practitioners with high accuracy comparable to that of commercial navigation surgery. The volume of the angle correction device is much smaller than that of any other commercial navigation surgery system. This device is expected to be widely utilized in various fields of orofacial surgery.This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2017R1D1A1B03036054)

    Decompressive effects of draining tube on suppurative and sclerosing osteomyelitis in the jaw

    Get PDF
    Background Osteomyelitis (OM) in the jaw is an inflammatory disease of osseous tissue that begins in the medullary space and progressively expands to the cortical portion of the bone, the Haversian system, the periosteum and the overlying soft tissue. Despite advances in dental and medical care, OM persists and is of important concern in modern medicine. Active negative pressure is known to prevent post-operative hematoma; decrease the number of bacterial pathogens, accumulation of toxins, and necrotic tissue; and promote osteogenesis and angiogenesis with the use of a draining tube such as the Jackson-Pratt (JP) or Hemovac. The purpose of this study was to assess the effectiveness of decompression for the treatment of OM in the jaw. Methods This retrospective study included a total of 130 patients, 55 patients with sclerosing OM and 75 patients with suppurative OM were included. The radiographic bone densities expressed as a grayscale values (GSVs), were measured using an easy digitalized panoramic analysis (EDPA) method, processed on the conditional inference tree, generated by the R program¼ 3.2.3 with a probability of 96.8%. Rectangle annotation analysis of INFINITT PACS¼ (INFINITT Healthcare, Seoul, Korea) of 50 mm2 was determined as the region of interest (ROI). Students t-test and ANOVA were used to determine significance (p < 0.05). Results Significant changes was observed between radiographic bone density in the sclerosing type with drain and without drain at the six-month and one-year follow-up (p < 0.05). Significant difference was demonstrated between the suppurative OM with drain and without drain groups at the one-year follow-up (p < 0.05). Conclusion The OM groups with drain exhibited more enhanced bone density compared to the groups without drain at the six-month and one-year follow-ups. The drain insertion for decompression is effective for the management of sclerosing and suppurative OM. It is recommended to implement it for the management of OM.This study was supported by grant no 03–2019-0043 from the SNUDH Research Fund and by Basic Science Research Program of NRF funded by the Ministry of Education (2017R1D1A1B04029339)

    Implant-supported orbital prosthesis: a technical innovation of silicone fabrication

    Get PDF
    Background Silicone-based facial prostheses have traditionally been considered difficult to make and require time-consuming fabrication due to their basic liquid characteristics. Methods and results A detailed procedure for creating an ideal silicone orbital prosthesis was developed, including dental implant-supported retention, three-dimensional (3D) orbital scanning with symmetric volume and size measurement based on matching the opposite side, master mold fabrication for convenient pouring of the liquid silicone elastomer, and easy and comfortable management of the prosthesis by the patient. Conclusion A silicone orbital prosthesis could be more easily and conveniently produced using updated surgical skills and modern 3D technology. The combination of 3D scanning with digital reconstruction and an innovative fabrication protocol using a reproducible major mold and multiple prototypes fitting resulted in an accuracy personalized facial prosthesis with accessible cost and short production period

    Comparison of Clinico-Radiological Features between Congenital Cystic Neuroblastoma and Neonatal Adrenal Hemorrhagic Pseudocyst

    Get PDF
    OBJECTIVE: To evaluate the radiological and clinical findings of congenital cystic neuroblastomas as compared with those of the cystic presentation of neonatal adrenal hemorrhage. MATERIALS AND METHODS: We analyzed the US (n = 52), CT (n = 24), and MR (n = 4) images as well as the medical records of 28 patients harboring congenital cystic neuroblastomas (n = 16) and neonatal adrenal hemorrhagic pseudocysts (n = 14). The history of prenatal detection, location, size, presence of outer wall enhancement, internal septations, solid portion, calcification, turbidity, vascular flow on a Doppler examination, and evolution patterns were compared in two groups of cystic lesions, by Fischer's exact test. RESULTS: All (100%) neuroblastomas and three (21%) of the 14 hemorrhagic pseudocysts were detected prenatally. Both groups of cystic lesions occurred more frequently on the right side; 11 of 16 (69%) for neuroblastomas and 11 of 14 (79%) for hemorrhagic pseudocysts. The size, presence of solid portion, septum, enhancement, and turbidity did not differ significantly (p > 0.05) between the two groups of cystic lesions. However, tiny calcifications (n = 3) and vascular flow on color Doppler US (n = 3) were noted in only neuroblastomas. The cystic neuroblastomas became complex solid and cystic masses, and did not disappear for up to 90 days in the three following cases, whereas 11 of the 14 (79%) hemorrhagic pseudocysts disappeared completely and the three remaining (27%) evolved to calcifications only. CONCLUSION: Although the imaging findings of two groups of cystic lesions were similar, prenatal detection, the presence of calcification on initial images, vascularity on color Doppler US, and evolution to a more complex mass may all favor neuroblastomasope

    Genome-wide analysis of DNA methylation patterns in horse

    Get PDF
    Background: DNA methylation is an epigenetic regulatory mechanism that plays an essential role in mediating biological processes and determining phenotypic plasticity in organisms. Although the horse reference genome and whole transcriptome data are publically available the global DNA methylation data are yet to be known. Results: We report the first genome-wide DNA methylation characteristics data from skeletal muscle, heart, lung, and cerebrum tissues of thoroughbred (TH) and Jeju (JH) horses, an indigenous Korea breed, respectively by methyl-DNA immunoprecipitation sequencing. The analysis of the DNA methylation patterns indicated that the average methylation density was the lowest in the promoter region, while the density in the coding DNA sequence region was the highest. Among repeat elements, a relatively high density of methylation was observed in long interspersed nuclear elements compared to short interspersed nuclear elements or long terminal repeat elements. We also successfully identified differential methylated regions through a comparative analysis of corresponding tissues from TH and JH, indicating that the gene body regions showed a high methylation density. Conclusions: We provide report the first DNA methylation landscape and differentially methylated genomic regions (DMRs) of thoroughbred and Jeju horses, providing comprehensive DMRs maps of the DNA methylome. These data are invaluable resource to better understanding of epigenetics in the horse providing information for the further biological function analyses.open1

    In vivo evaluation of [18F]fluoroetanidazole as a new marker for imaging tumour hypoxia with positron emission tomography

    Get PDF
    Development of hypoxia-targeted therapies has stimulated the search for clinically applicable noninvasive markers of tumour hypoxia. Here, we describe the validation of [18F]fluoroetanidazole ([18F]FETA) as a tumour hypoxia marker by positron emission tomography (PET). Cellular transport and retention of [18F]FETA were determined in vitro under air vs nitrogen. Biodistribution and metabolism of the radiotracer were determined in mice bearing MCF-7, RIF-1, EMT6, HT1080/26.6, and HT1080/1-3C xenografts. Dynamic PET imaging was performed on a dedicated small animal scanner. [18F]FETA, with an octanol–water partition coefficient of 0.16±0.01, was selectively retained by RIF-1 cells under hypoxia compared to air (3.4- to 4.3-fold at 60–120 min). The radiotracer was stable in the plasma and distributed well to all the tissues studied. The 60-min tumour/muscle ratios positively correlated with the percentage of pO2 values <5 mmHg (r=0.805, P=0.027) and carbogen breathing decreased [18F]FETA-derived radioactivity levels (P=0.028). In contrast, nitroreductase activity did not influence accumulation. Tumours were sufficiently visualised by PET imaging within 30–60 min. Higher fractional retention of [18F]FETA in HT1080/1-3C vs HT1080/26.6 tumours determined by dynamic PET imaging (P=0.05) reflected higher percentage of pO2 values <1 mmHg (P=0.023), lower vessel density (P=0.026), and higher radiobiological hypoxic fraction (P=0.008) of the HT1080/1-3C tumours. In conclusion, [18F]FETA shows hypoxia-dependent tumour retention and is, thus, a promising PET marker that warrants clinical evaluation

    Deficiency of the Mitochondrial Electron Transport Chain in Muscle Does Not Cause Insulin Resistance

    Get PDF
    It has been proposed that muscle insulin resistance in type 2 diabetes is due to a selective decrease in the components of the mitochondrial electron transport chain and results from accumulation of toxic products of incomplete fat oxidation. The purpose of the present study was to test this hypothesis.Rats were made severely iron deficient, by means of an iron-deficient diet. Iron deficiency results in decreases of the iron containing mitochondrial respiratory chain proteins without affecting the enzymes of the fatty acid oxidation pathway. Insulin resistance was induced by feeding iron-deficient and control rats a high fat diet. Skeletal muscle insulin resistance was evaluated by measuring glucose transport activity in soleus muscle strips. Mitochondrial proteins were measured by Western blot. Iron deficiency resulted in a decrease in expression of iron containing proteins of the mitochondrial respiratory chain in muscle. Citrate synthase, a non-iron containing citrate cycle enzyme, and long chain acyl-CoA dehydrogenase (LCAD), used as a marker for the fatty acid oxidation pathway, were unaffected by the iron deficiency. Oleate oxidation by muscle homogenates was increased by high fat feeding and decreased by iron deficiency despite high fat feeding. The high fat diet caused severe insulin resistance of muscle glucose transport. Iron deficiency completely protected against the high fat diet-induced muscle insulin resistance.The results of the study argue against the hypothesis that a deficiency of the electron transport chain (ETC), and imbalance between the ETC and ÎČ-oxidation pathways, causes muscle insulin resistance

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    • 

    corecore