44 research outputs found

    Diffusion of an Organic Cation into Root Cell Walls

    No full text
    In plant roots, water and ions are transported via the apoplast and the symplast. These two pathways for miner al nutrient ions are equivalent, and predominance of one of them is mainly determined by environmental condi tions and the type of transported compound Several stages of ion exchange processes involving cross linked three dimensional ionites (including plant cell wall) are generally recognized Diffusion of an Organic Cation int

    Comparative hydrolysis and sorption of Al and La onto plant cell wall material and pectic materials

    No full text
    Pectin, which is an important component of plant cell walls, strongly binds Al and this may play a role in expression of Al toxicity. Sorption of aluminium (Al) and lanthanum (La) from aqueous solutions onto pectic acid, Ca-pectate and plant cell wall material was pH dependent. For Al at pH 3, sorption was less than the available sorption sites (i.e., the cation exchange capacity) on all three sorbents, whereas at pH 4, sorption of Al was in excess of available sorption capacity. By contrast, sorption of the trivalent Al analogue La corresponded to the available sorption capacity on all three sorbents at pH 5. This indicates, therefore, that Al hydrolyses at a parts per thousand yen pH 4, and hydrolysis increases with Al concentration in solution. Further, it is proposed that the sorption of Al to pectin leads to deprotonation of the galacturonic acid (GalA) residues. Sorption of Al to pectin limits hydrolysis of Al, thereby shifting the pH of hydrolysis to a higher value. Hydrolysis of Al results in its sorption in excess of the stoichiometric equivalent (assuming the free Al(3+) ion), leading to oversaturation of the pectin with Al. Staining of the metal-pectate complexes with the metachromatic dye eosin showed that with increasing Al saturation (but not La saturation), the complex developed a positive net charge, due to formation of some positively charged Al-complexes. The development of a positive charge on the Al-pectate complex may have major effects on cellular transmembrane potential and nutrient acquisition by plant roots. This is the first report of Al binding in excess of binding sites and development of a net positive charge on Al-pectate
    corecore