497 research outputs found
Inference of Host–Pathogen Interaction Matrices from Genome-Wide Polymorphism Data
Host–pathogen coevolution is defined as the reciprocal evolutionary changes in both species due to genotype × genotype (G×G) interactions at the genetic level determining the outcome and severity of infection. While co-analyses of hosts and pathogen genomes (co-genome-wide association studies) allow us to pinpoint the interacting genes, these do not reveal which host genotype(s) is/are resistant to which pathogen genotype(s). The knowledge of this so-called infection matrix is important for agriculture and medicine. Building on established theories of host–pathogen interactions, we here derive four novel indices capturing the characteristics of the infection matrix. These indices can be computed from full genome polymorphism data of randomly sampled uninfected hosts, as well as infected hosts and their pathogen strains. We use these indices in an approximate Bayesian computation method to pinpoint loci with relevant G×G interactions and to infer their underlying interaction matrix. In a combined single nucleotide polymorphism dataset of 451 European humans and their infecting hepatitis C virus (HCV) strains and 503 uninfected individuals, we reveal a new human candidate gene for resistance to HCV and new virus mutations matching human genes. For two groups of significant human–HCV (G×G) associations, we infer a gene-for-gene infection matrix, which is commonly assumed to be typical of plant–pathogen interactions. Our model-based inference framework bridges theoretical models of G×G interactions with host and pathogen genomic data. It, therefore, paves the way for understanding the evolution of key G×G interactions underpinning HCV adaptation to the European human population after a recent expansion
Coherent x-ray wavefront reconstruction of a partially illuminated Fresnel zone plate
International audienceA detailed characterization of the coherent x-ray wavefront produced by a partially illuminated Fresnel zone plate is presented. We show, by numerical and experimental approaches, how the beam size and the focal depth are strongly influenced by the illumination conditions, while the phase of the focal spot remains constant. These results confirm that the partial illumination can be used for coherent diffraction experiments. Finally, we demonstrate the possibility of reconstructing the complex-valued illumination function by simple measurement of the far field intensity in the specific case of partial illumination
Development of a MALDI MS-based platform for early detection of acute kidney injury
Purpose:
Septic acute kidney injury (AKI) is associated with poor outcome. This can partly be attributed to delayed diagnosis and incomplete understanding of the underlying pathophysiology. Our aim was to develop an early predictive test for AKI based on the analysis of urinary peptide biomarkers by MALDI-MS.
Experimental design:
Urine samples from 95 patients with sepsis were analyzed by MALDI-MS. Marker search and multimarker model establishment were performed using the peptide profiles from 17 patients with existing or within the next 5 days developing AKI and 17 with no change in renal function. Replicates of urine sample pools from the AKI and non-AKI patient groups and normal controls were also included to select the analytically most robust AKI markers.
Results:
Thirty-nine urinary peptides were selected by cross-validated variable selection to generate a support vector machine multidimensional AKI classifier. Prognostic performance of the AKI classifier on an independent validation set including the remaining 61 patients of the study population (17 controls and 44 cases) was good with an area under the receiver operating characteristics curve of 0.82 and a sensitivity and specificity of 86% and 76%, respectively.
Conclusion and clinical relevance:
A urinary peptide marker model detects onset of AKI with acceptable accuracy in septic patients. Such a platform can eventually be transferred to the clinic as fast MALDI-MS test format
RF-Separated Beam Project for the M2 Beam Line at CERN
Within the framework of the Physics Beyond Colliders initiative at CERN, discussions are underway on the feasibility of producing radio-frequency (RF) separated beams for Phase-2 of the AMBER experiment at the M2 beam line in the North experimental area of the CERN SPS. The technique of RF separation is applied to enrich the content of a certain particle type within a beam consisting of different species at the same momentum. It relies on the fact that each particle type has a different velocity, decreasing with rest mass. The successor of the COMPASS experiment, AMBER, requires for its Phase-2 measurements high-intensity, high-purity kaon (and antiproton) beams, which cannot be delivered with the currently existing conventional M2 beam line. The present contribution introduces the principle of RF separation and explains its dependence on different parameters of beam optics and hardware. The first examination of potential showstoppers for the RF-separated beam implementation is presented, based on the particle production rates, beam line transmission for specific optics settings, limitations for overall beam intensity and purity posed by beam line acceptance and radiation protection. Different beam optics settings have been examined, providing either focused or parallel beams inside the RF cavities. The separation and transmission capability of the different optics settings for realistic characteristics of RF cavities are discussed and the preliminary results of the potential purity and intensity of the RF-separated beam are presented. They illustrate the high importance of an RF-separated kaon beam for many of the AMBER Phase-2 data taking programs, such as spectroscopy, prompt-photon production, Primakoff reactions and kaon charge-radius measurement
Shape Self-Regulation in Early Lung Morphogenesis
The arborescent architecture of mammalian conductive airways results from the repeated branching of lung endoderm into surrounding mesoderm. Subsequent lung’s striking geometrical features have long raised the question of developmental mechanisms involved in morphogenesis. Many molecular actors have been identified, and several studies demonstrated the central role of Fgf10 and Shh in growth and branching. However, the actual branching mechanism and the way branching events are organized at the organ scale to achieve a self-avoiding tree remain to be understood through a model compatible with evidenced signaling. In this paper we show that the mere diffusion of FGF10 from distal mesenchyme involves differential epithelial proliferation that spontaneously leads to branching. Modeling FGF10 diffusion from sub-mesothelial mesenchyme where Fgf10 is known to be expressed and computing epithelial and mesenchymal growth in a coupled manner, we found that the resulting laplacian dynamics precisely accounts for the patterning of FGF10-induced genes, and that it spontaneously involves differential proliferation leading to a self-avoiding and space-filling tree, through mechanisms that we detail. The tree’s fine morphological features depend on the epithelial growth response to FGF10, underlain by the lung’s complex regulatory network. Notably, our results suggest that no branching information has to be encoded and that no master routine is required to organize branching events at the organ scale. Despite its simplicity, this model identifies key mechanisms of lung development, from branching to organ-scale organization, and could prove relevant to the development of other branched organs relying on similar pathways
Generation of NSE-MerCreMer Transgenic Mice with Tamoxifen Inducible Cre Activity in Neurons
To establish a genetic tool for conditional deletion or expression of gene in neurons in a temporally controlled manner, we generated a transgenic mouse (NSE-MerCreMer), which expressed a tamoxifen inducible type of Cre recombinase specifically in neurons. The tamoxifen inducible Cre recombinase (MerCreMer) is a fusion protein containing Cre recombinase with two modified estrogen receptor ligand binding domains at both ends, and is driven by the neural-specific rat neural specific enolase (NSE) promoter. A total of two transgenic lines were established, and expression of MerCreMer in neurons of the central and enteric nervous systems was confirmed. Transcript of MerCreMer was detected in several non-neural tissues such as heart, liver, and kidney in these lines. In the background of the Cre reporter mouse strain Rosa26R, Cre recombinase activity was inducible in neurons of adult NSE-MerCreMer mice treated with tamoxifen by intragastric gavage, but not in those fed with corn oil only. We conclude that NSE-MerCreMer lines will be useful for studying gene functions in neurons for the conditions that Cre-mediated recombination resulting in embryonic lethality, which precludes investigation of gene functions in neurons through later stages of development and in adult
Regulatory domain selectivity in the cell-type specific PKN-dependence of cell migration
The mammalian protein kinase N (PKN) family of Serine/Threonine kinases comprises three isoforms, which are targets for Rho family GTPases. Small GTPases are major regulators of the cellular cytoskeleton, generating interest in the role(s) of specific PKN isoforms in processes such as cell migration and invasion. It has been reported that PKN3 is required for prostate tumour cell invasion but not PKN1 or 2. Here we employ a cell model, the 5637 bladder tumour cell line where PKN2 is relatively highly expressed, to assess the potential redundancy of these isoforms in migratory responses. It is established that PKN2 has a critical role in the migration and invasion of these cells. Furthermore, using a PKN wild-type and chimera rescue strategy, it is shown that PKN isoforms are not simply redundant in supporting migration, but appear to be linked through isoform specific regulatory domain properties to selective upstream signals. It is concluded that intervention in PKNs may need to be directed at multiple isoforms to be effective in different cell types
Hepatitis B Virus Impairs TLR9 Expression and Function in Plasmacytoid Dendritic Cells
Plasmacytoid dendritic cells (pDCs) play a key role in detecting pathogens by producing large amounts of type I interferon (IFN) by sensing the presence of viral infections through the Toll-Like Receptor (TLR) pathway. TLR9 is a sensor of viral and bacterial DNA motifs and activates the IRF7 transcription factor which leads to type I IFN secretion by pDCs. However, during chronic hepatitis B virus (HBV) infection, pDCs display an impaired ability to secrete IFN-α following ex vivo stimulation with TLR9 ligands. Here we highlight several strategies used by HBV to block IFN-α production through a specific impairment of the TLR9 signaling. Our results show that HBV particle internalisation could inhibit TLR9- but not TLR7-mediated secretion of IFN-α by pDCs. We observed that HBV down-regulated TLR9 transcriptional activity in pDCs and B cells in which TLR9 mRNA and protein levels were reduced. HBV can interfere with TLR9 activity by blocking the MyD88-IRAK4 axis and Sendai virus targeting IRF7 to block IFN-α production. Neutralising CpG motif sequences were identified within HBV DNA genome of genotypes A to H which displayed a suppressive effect on TLR9-immune activation. Moreover, TLR9 mRNA and protein were downregulated in PBMCs from patients with HBV-associated chronic hepatitis and hepatocellular carcinoma. Thus HBV has developed several escape mechanisms to avoid TLR9 activation in both pDCs and B lymphocytes, which may in turn contribute to the establishment and/or persistence of chronic infection
A pulsating auroral X-ray hot spot on Jupiter
Jupiter's X-ray aurora has been thought to be excited by energetic sulphur and oxygen ions precipitating from the inner magnetosphere into the planet's polar regions(1-3). Here we report high-spatial-resolution observations that demonstrate that most of Jupiter's northern auroral X-rays come from a 'hot spot' located significantly poleward of the latitudes connected to the inner magnetosphere. The hot spot seems to be fixed in magnetic latitude and longitude and occurs in a region where anomalous infrared(4-7) and ultraviolet(8) emissions have also been observed. We infer from the data that the particles that excite the aurora originate in the outer magnetosphere. The hot spot X-rays pulsate with an approximately 45-min period, a period similar to that reported for high-latitude radio and energetic electron bursts observed by near-Jupiter spacecraft(9,10). These results invalidate the idea that jovian auroral X-ray emissions are mainly excited by steady precipitation of energetic heavy ions from the inner magnetosphere. Instead, the X-rays seem to result from currently unexplained processes in the outer magnetosphere that produce highly localized and highly variable emissions over an extremely wide range of wavelengths.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62624/1/4151000a.pd
- …