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Abstract
Host–pathogen coevolution is defined as the reciprocal evolutionary changes in both species due to genotype × 
genotype (G×G) interactions at the genetic level determining the outcome and severity of infection. While co- 
analyses of hosts and pathogen genomes (co-genome-wide association studies) allow us to pinpoint the interacting 
genes, these do not reveal which host genotype(s) is/are resistant to which pathogen genotype(s). The knowledge of 
this so-called infection matrix is important for agriculture and medicine. Building on established theories of host– 
pathogen interactions, we here derive four novel indices capturing the characteristics of the infection matrix. These 
indices can be computed from full genome polymorphism data of randomly sampled uninfected hosts, as well as 
infected hosts and their pathogen strains. We use these indices in an approximate Bayesian computation method 
to pinpoint loci with relevant G×G interactions and to infer their underlying interaction matrix. In a combined single 
nucleotide polymorphism dataset of 451 European humans and their infecting hepatitis C virus (HCV) strains and 
503 uninfected individuals, we reveal a new human candidate gene for resistance to HCV and new virus mutations 
matching human genes. For two groups of significant human–HCV (G×G) associations, we infer a gene-for-gene in
fection matrix, which is commonly assumed to be typical of plant–pathogen interactions. Our model-based inference 
framework bridges theoretical models of G×G interactions with host and pathogen genomic data. It, therefore, paves 
the way for understanding the evolution of key G×G interactions underpinning HCV adaptation to the European 
human population after a recent expansion.

Key words: population genomics, linkage disequilibrium, single nucleotide polymorphism, host–pathogen co
evolution, G×G interactions.
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Introduction
Host–pathogen or host–parasite antagonistic interactions 
are pervasive in nature. Their relevance ranges from specific 
simple interactions underpinning devastating epidemics 
(Gilligan 2008; Tomley and Shirley 2009; Andreakos et al. 
2022) up to the multitrophic interactions shaping ecosys
tems and microbiomes (Scanlan 2017). Coevolution is de
fined as the evolutionary change in one antagonist (host) 
in response to changes in the other antagonist (pathogen) 
and vice versa. At the genetic level, these changes are deter
mined by genotype × genotype (G×G) interactions between 
a few (up to many) host and pathogen genes. Host genotypes 
differ in their resistance to pathogen strains which in turn dif
fer in their infectivity (ability to infect and cause disease) on 

the given host genotypes. Host–pathogen G×G interactions 
are defined by their (i) genetic architecture (how many genes 
are involved?), (ii) specificity (which G×G interactions can 
yield a resistance phenotypic outcome?), and (iii) strength 
(what is the phenotypic outcome, full resistance up to severe 
infection?). Previous studies suggest that the number of loci 
involved varies between different host–pathogen systems 
and there are often epistatic interactions between loci 
(Dexter et al. 2023). Knowing the genetic architecture, speci
ficity, and strength of G×G interactions is crucial for under
standing and predicting the speed and outcome of 
coevolutionary dynamics (Gandon and Michalakis 2002; 
Boots et al. 2014; Tellier et al. 2014) and for disease manage
ment in agriculture and medicine.
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The potentially devastating effects of infection 
prompted a wealth of genome-wide association studies 
(GWAS) to identify the genetic architecture (involved 
genes) of host–pathogen G×G interactions. Single-species 
GWAS are performed by associating genomic variants 
with a binary disease outcome: (i) infected versus nonin
fected hosts such as humans (Barreiro and Quintana- 
Murci 2010; Casanova and Abel 2021), invertebrates 
(Bento et al. 2017, 2020), and plants (Nemri et al. 2010; 
Pogoda et al. 2020; Demirjian et al. 2023), or (ii) infective/ 
noninfective pathogens (Andras et al. 2020). With the 
growing availability of both host and pathogen genomic 
data, two types of joint GWAS (so-called co-GWAS) have 
been developed to identify significant G×G loci (Bartha 
et al. 2013; Bartoli and Roux 2017; Wang et al. 2018; 
Märkle et al. 2021). Experimental co-GWAS require a full 
experimental factorial design of reciprocal infections to as
sess the outcome of infection (phenotype) (Wang et al. 
2018; Märkle et al. 2021). However, controlling for the gen
etic background and running controlled infection experi
ments is not feasible for human hosts and often difficult 
to achieve for nonmodel natural host–pathogen interac
tions. As an alternative, natural co-GWAS (Bartoli and 
Roux 2017; Märkle et al. 2021) jointly associate genome- 
wide polymorphism data of infected hosts with poly
morphism data of their respective infecting pathogen 
strains (Bartha et al. 2013). Such natural co-GWAS have 
since been applied successfully to find associations be
tween human genes and pathogen loci of HIV (Bartha 
et al. 2013), the hepatitis C virus (HCV) (Ansari et al. 
2017), Streptococcus pneumoniae (Lees et al. 2019) and 
Plasmodium falciparum (Band et al. 2022) and to study in
teractions between Daphnia magna host and Pasteuria ra
mosa (Dexter et al. 2023).

Yet, deciphering the specificity and strength of the G×G 
interactions at the loci of interest has remained empirically 
out of reach for most host–pathogen systems. The specifi
city and strength of host–pathogen G×G interactions are 
classically summarized within the so-called infection ma
trix, which captures the extent to which each pathogen 
genotype successfully infects each host genotype (0 mean
ing full host resistance, and 1 meaning full host susceptibil
ity, Fig. 1a,b). There is a wide range of possible infection 
matrices which differ in their levels of symmetry, specifi
city, and strength (Agrawal and Lively 2002; Gandon and 
Michalakis 2002; Boots et al. 2014). Throughout the article 
we will focus on five matrices of interest (Fig. 1b): (i) the 
generalist pathogen (P) infectivity/noninfectivity matrix 
(AP) in which one pathogen genotype has a high infectiv
ity on all host genotypes, (ii) the generalist host (H) resist
ance/susceptibility matrix (AH) where one host genotype 
is highly resistant to all pathogen genotypes, (iii) the spe
cific matching-alleles (MA) matrix (AMA) where each 
pathogen genotype is specialized to infect one host geno
type as found in the D. magna–Pasteuria pathosystem 
(Luijckx et al. 2013), (iv) the specific gene-for-gene (GFG) 
matrix (AGFG) were one host genotype is universally sus
ceptible and one pathogen genotype is universally 

infective, and (v) a perfect inverse GFG matrix (AiGFG) 
where one host genotype is universally resistant and one 
pathogen genotype is universally noninfective (Fenton 
et al. 2009). GFG interactions have been mainly documen
ted for plant–pathogen interactions (Thompson and 
Burdon 1992; Dybdahl et al. 2014). MA interactions have 
been long hypothesized to underlie the interactions be
tween the human major histocompatibility complex 
(MHC) and mammalian immunity genes and correspond
ing pathogen genes (Hill et al. 1997; Dybdahl et al. 2014; 
Råberg 2023). Experimentally deciphering the infection 
matrix requires combinatorial infection assays of many 
host and pathogen genotypes (clones or isogenic lines 
with known allelic variants) in controlled conditions. 
Thus, it is prohibitive for most host–pathogen systems 
(but see Luijckx et al. 2013; Moury et al. 2021).

We propose and develop a framework that jointly uses 
genomic data of hosts and their pathogens from natural 
populations to detect the genes underpinning G×G inter
actions and infer the interactions’ specificity and strength. 
The model underlying our framework builds upon the clas
sic theory of disease epidemiology and host–pathogen co
evolution (Kermack and McKendrick 1927; Anderson and 
May 1982; May and Anderson 1983; Boots et al. 2009; 
Diekmann et al. 2013; Gandon et al. 2016; Buckingham 
and Ashby 2022) and explicitly accounts for three funda
mental sampling processes in host and pathogen popula
tions (Fig. 1c): (i) (co)evolutionary sampling (Dybdahl 
et al. 2014; MacPherson et al. 2018), (ii) disease exposure 
sampling, and (iii) experimental sampling. The first process 
is a result of coevolution itself, namely host and pathogen 
genotype frequencies fluctuate in space and time as a dir
ect result of reciprocal selection (coevolution), genetic 
drift, mutations, and gene flow (Gandon and Michalakis 
2002; Tellier et al. 2014). As a result, only a subset of all pos
sible interactions between host and pathogen genotypes 
may be present at a given point in space and time 
(Fig. 1c) (Dybdahl et al. 2014; Tellier et al. 2014). Thus, 
the sampling of host and pathogen genotypes may be in
complete. This effect is a major hindrance for host (or 
pathogen) single-species GWAS as it decreases the statis
tical power when not accounting for the genetic hetero
geneity of populations (MacPherson et al. 2018). Second, 
host genotypes need to encounter corresponding patho
gen genotypes in order to get infected as a result of a spe
cific G×G interaction. We refer to this process as disease 
exposure sampling. The likelihood of such encounters in 
natural populations is governed by the host and pathogen 
genotype frequencies (or densities), the host population 
size, and the disease transmission rate. These factors, in 
combination with the specific G×G matrix, determine 
the disease dynamics and the disease prevalence (that is, 
the number/proportion of infected hosts) at a given point 
in time. An observer cannot know if an uninfected host in 
a natural population had a pathogen exposure but is resist
ant, or if the host has never been in contact with patho
gens (Fig. 1c,d). Third, sampling a limited number 
(subset) of host (infected and noninfected) and pathogen 
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individuals (genotypes) from the entire population for 
experimental and genomic studies may further blur the 
true infection matrix (Fig. 1d), as the sampling may over- 
(or under)represent some G×G associations. The combin
ation of these three sampling processes renders the infer
ence of the underlying infection matrix a nontrivial task 
(Fig. 1). We argue that, so far, the consequences of these 
stochastic processes on the statistical power of natural 
co-GWAS are poorly understood. Specifically, we expect 
that these three processes generate variability in the sam
ple allele frequencies. Thus, in addition to the previously 
reported effects of the coevolutionary dynamics and in
complete sampling of hosts and pathogen genotypes 
(MacPherson et al. 2018), the statistical power of GWAS 
and co-GWAS studies to detect G×G interactions would 
depend on the true (yet unknown) infection matrix, the 
probability of being exposed to potentially infective patho
gens and the sampling scheme (infected and/or nonin
fected hosts).

In this study, we first derive four different indices based 
on host–pathogen coevolutionary theory which are jointly 
used to tackle the problem of inferring the significant G×G 
interactions and assess their infection matrices under the 
described stochastic processes. We aim to (i) pinpoint 
genes underlying G×G interactions, and (ii) infer the under
lying infection matrix using these indices. The indices are 
incorporated as summary statistics into an approximate 
Bayesian computation (ABC) framework to jointly analyze 
genomes of noninfected hosts as well as infected hosts and 
their matching pathogens. We assess by stochastic simula
tions and via the power analysis of the ABC model choice 
procedure (leave-one-out cross-validation) if and how 
the statistical power of these indices to discriminate be
tween different infection matrices is affected by the three 
mentioned sampling processes. We infer, as a proof of prin
ciple, the interaction matrices underpinning 535 biological
ly relevant G×G associations between human single 
nucleotide polymorphism (SNPs) and single amino acid 

(a)

(b)

(c)

(d)

Fig. 1. Schematic view of the principles of G×G interactions underlying host–pathogen coevolution and the characteristics of the sampling 
process. Our framework captures the effects of experimental and disease exposure sampling at a single time point of the coevolutionary dynam
ics. a) We assume an interaction between a biallelic host and a biallelic pathogen locus. b) The outcome of the interaction is summarized by a 
2×2 infection matrix with host genotypes as rows and pathogen genotypes as columns. Some classic examples with extreme values are sche
matically depicted, namely the pathogen infectivity/noninfectivity (AP , yellow), matching-allele (AMA , blue), inverse GFG (AiGFG, dark green), 
host resistance/susceptibility (AH , light green), GFG (AGFG , purple), and neutral (AN , gray) matrix. c) Schematic representation of the infection 
process and the host’s status at the population level. In a homogeneous population, a proportion ϕ (the disease encounter rate) of hosts en
counters pathogen infectious propagules at random, and a proportion 1 − ϕ does not (disease exposure sampling). Hosts with a solid outline 
(and circled in green) in the exposed class are resistant to the infection (appear as healthy) due to the specific form of the underlying infection 
matrix. d) Genomic studies are performed by taking a sample of healthy and infected hosts from the total population, generating a potential bias 
in sample allele frequencies compared to population allele frequencies (experimental sampling). On a population level, the frequencies of the 
host and pathogen alleles are determined by the coevolutionary process (coevolutionary sampling).
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polymorphisms (SAAPs) of HCV, using 451 infected indivi
duals and the HCV sequences of the infecting strains 
(Ansari et al. 2017) complemented by 503 human genomes 
(The 1000 Genomes Project Consortium 2015). While our 
theoretical framework can be further refined, it encom
passes the complexity of host–pathogen interactions and 
the relevant stochastic processes to be considered when 
designing and performing natural co-GWAS studies.

Results
Indices Capture Features of the Infection Matrices
We develop a simple theoretical model capturing the 
current state of an infection process in a host population 
of large size. The model underlying our framework builds 
upon the classic theory of disease epidemiology and co
evolution (May and Anderson 1983; Gandon and 
Michalakis 2002; Boots et al. 2009, 2014; Buckingham and 
Ashby 2022), or population genetics host–pathogen co
evolution models with frequency-dependent disease trans
mission (Leonard 1977; Tellier and Brown 2007; Tellier et al. 
2014). It summarizes the outcome of various different types 
of infection processes as explicitly stated in (i) epidemio
logical models with density- or frequency-dependent dis
ease transmission or (ii) population genetic models. We 
coin the term disease exposure sampling as the process 
by which only a fraction (<100%) of host individuals in 
the population is exposed to the disease. Our model is 
kept simple and does not account for (i) temporal epi
demiological dynamics, or (ii) interactions between the 
host/pathogen allele frequencies and disease transmission 
dynamics (the so-called epidemiological feedback, May 
and Anderson 1983; Gandon and Michalakis 2002; Boots 
et al. 2009, 2014; Buckingham and Ashby 2022). The model 
focuses on the current state/outcome of an infection pro
cess at the time of sampling individuals for sequencing (see 
supplementary text S1, Supplementary Material online for 
a more detailed discussion). In other words, our disease ex
posure sampling does not refer to the process of epidemic 
development itself but to the stochastic inherent nature of 
disease transmission in a host population (with two types 
of hosts and two types of parasites/pathogens).

In short, the model assumes that biallelic hosts encoun
ter biallelic pathogens at random (mass action principle) 
at a given disease encounter rate ϕ (supplementary 
table S1 and Supplementary text S1, Supplementary 
Material online) which we use as a proxy for disease expos
ure sampling. Thus, our model follows the assumption of 
the SI-type of models of disease contact being homoge
neous and random (mean field approximation, May and 
Anderson 1983; Buckingham and Ashby 2022). We assume 
frequency-dependent disease transmission as we are only 
interested in the frequencies of the different alleles in 
the different infected and noninfected compartments. At 
the time of sampling host individuals for genomic analyses, 
the host population is split into two compartments, name
ly infected hosts (frequency f̃ ) and uninfected hosts (fre
quency 1 − f̃ ). The latter comprises hosts that either did 

not encounter pathogens or resisted infection when ex
posed to infectious propagules. Note, we implicitly assume 
here that hosts cannot encounter pathogens twice, and 
there is no immune memory present in the current popu
lation, i.e. from previous epidemics.

We denote the frequency of uninfected hosts of type i in 
the entire population as fiz. Assuming biallelic host and 
pathogen genotypes, there is a maximum of four possible 
host–pathogen associations in the infected compartment. 
We denote the frequency of hosts with genotype i infected 
by pathogens genotype j in the entire population as fij and 
in the infected subpopulation as f̃ ij. These frequencies de
pend on the frequency of hosts of type i (hi), the initial fre
quencies of pathogen genotype j (pj) before the disease 
exposure sampling, the infection matrix (α), and the rate 
ϕ at which hosts are exposed to the disease (for a summary 
and explanation of all parameters see supplementary 
table S1, Supplementary Material online).

We develop four indices that capture different aspects 
of a given G×G interaction matrix α (Fig. 1b). These indices 
combine information of host allele frequencies from in
fected hosts and their associated pathogen strains (patho
gen allele frequencies) as in a natural co-GWAS (Bartha 
et al. 2013; Ansari et al. 2017; Bartoli and Roux 2017), as 
well as additional information of allele frequencies in a 
sample of noninfected hosts as in host GWAS (Barreiro 
and Quintana-Murci 2010; Nemri et al. 2010). Our first in
dex, the cross-species association (ICSA) index, is a cross- 
species analog of linkage disequilibrium (Fenton et al. 
2009; Märkle et al. 2021) (also termed interlinkage 
Dexter et al. 2023). It assesses the association between 
the genotype of an infected host and the genotype of 
the pathogen strain infecting it. Thus, it is expected to cap
ture information similar to that of natural co-GWAS. The 
host susceptibility (IHS) index compares allele frequencies 
in the infected versus noninfected host subsamples and is 
thus similar to host GWAS. The pathogen infectivity (I PI) 
assesses differences between pathogen allele frequencies 
(thus similar to pathogen GWAS). Finally, the host parti
tioning (IHP) index is designed to compare the allele 
frequency of one host genotype when infected by a par
ticular pathogen genotype to its frequency in the 
noninfected part of the population. The IHP index 
thus contains novel information (compared to co-GWAS 
and GWAS) on the asymmetry, specificity, and 
strength of the infection matrix. The four indices are de
fined as:

ICSA =
f̃ 11 f̃ 22 − f̃ 12 f̃ 21

f̅1

􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌

IHS =
( f11 + f12)f2z − ( f21 + f22)f1z

f̅2

􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌,

IPI =
f12 f22 − f11 f21

f̅2

􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌,

IHP =
f12 f2z − f21 f1z

f̅2

􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌,

(1) 
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with:

f̅1 =
�������������������������������������������

( f̃11 + f̃12)( f̃21 + f̃22)( f̃11 + f̃21)( f̃12 + f̃22)
􏽱

.

f̅2 = ( f 11 + f 12 + f 1z)( f 21 + f 22 + f 2z).
(2) 

Expressing these indices in terms of the population com
position (supplementary table S1, Supplementary 
Material online) and the coefficients αij of an arbitrary 
2×2 infection matrix we find (supplementary text S1, 
Supplementary Material online):

I 2
CSA =

h1h2p1p2 α11α22 − α12α21( )2

α11p1 + α12p2
( 􏼁

α21p1 + α22p2
( 􏼁

α11h1 + α21h2( ) α12h1 + α22h2( )

􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌
,

IHS = ϕ α11 − α21( )p1 + α12 − α22( )p2
􏼂 􏼃􏼌

􏼌
􏼌
􏼌,

IPI = ϕ2 p2
2α12α22 − p2

1α11α21
( 􏼁􏼌

􏼌
􏼌
􏼌,

IHP = ϕ α12p2(1 − ϕα22p2) − α21p1(1 − ϕα11p1)
( 􏼁􏼌

􏼌
􏼌
􏼌.

(3) 

We first derive the population level values of these indices 
(Table 1, supplementary table S1, Supplementary Material
online) for different infection matrices and initial host and 
pathogen allele frequencies. The frequencies provide us 
with a way to capture the performance of our indices for 
different unknown coevolutionary/epidemiological dy
namics when genomic data have been only sampled at a 
single time point. This allows us to assess if the combin
ation of these four indices is suitable to distinguish be
tween different matrices. Note that our neutral matrix 
(all matrix elements 1, Fig. 1b) builds on the hypothesis 
that the G×G interaction of a given pair of host and patho
gen loci is not relevant for the infection status. Studying 
the most extreme forms (all elements either 0 or 1) of 
these infection matrices we find that the behavior of the 
combination of our indices differs among infection matri
ces. For example, the ICSA index provides a clear distinc
tion between the AGFG and AMA matrix from all other 
matrices. Our results (Table 1) further highlight dependen
cies of the index values on the disease encounter rate (ϕ) 
and/or nonlinear relationships with pathogen allele fre
quencies prior to host exposure to pathogens (equation 
(3)). When we derive expressions of the index values 

for more general forms of the corresponding G×G matri
ces (supplementary table S1, Supplementary Material
online) where infection matrix elements can deviate 
from 0 and 1, the expressions become more cumbersome 
(supplementary table S2, Supplementary Material online). 
These deviations reflect more quantitative disease resist
ance/susceptibility and account for the fact that the inves
tigated matrices are expected to show some variation in 
natural systems. Yet, we still find that the combination of 
all four index values shows a differential behavior across 
the different infection matrices. Therefore, it appears 
that the combination of our four indices can be suitable 
to discriminate between different types of infection ma
trices. Extending these theoretical results, it is, in prin
ciple, possible to directly compute the values of the 
coefficients of the infection matrix (αij) by simultaneously 
solving the set of all equations (equation (3)). However, 
this approach shows only reasonable results when the dis
ease encounter rate is known and ∼50% and when 
population-level allele frequencies are known (which is 
in practice not the case because of the effect of the ex
perimental sampling, Fig. 1d, supplementary text S1, 
Supplementary Material online).

Table 1 Values of indices for different G×G matrices assuming host genotypes being fully susceptible to infection by pathogen genotype j when αij = 1 or 
fully resistant when αij = 0. Note that the numerator of I 2

CSA is zero for the AP , AiGFG , and AH matrices with values 0/1. However, the normalization 
factor (denominator) also equals zero and invalidates the computations. These cases are not studied in natural co-GWAS because they correspond to 
either the host and/or the pathogen to be monomorphic.

IHS I PI I 2
CSA IHP

AN = 1 1
1 1

􏼒 􏼓

0 |ϕ2 p2 − p1
( 􏼁

| 0 |ϕ 1 − ϕ
( 􏼁

p2 − p1
( 􏼁

|

AGFG = 1 1
0 1

􏼒 􏼓

|ϕp1| |ϕ2p2
2| |p1h2| |ϕp2(1 − ϕp2)|

AMA = 1 0
0 1

􏼒 􏼓

|ϕ 2p1 − 1
( 􏼁

| 0 1 0

AiGFG = 0 0
1 0

􏼒 􏼓

| − ϕp1| 0 0 | − ϕp1|

AH = 0 0
1 1

􏼒 􏼓

| − ϕ| 0 0 | − ϕp1|

AP = 0 1
0 1

􏼒 􏼓

0 |ϕ2p2
2| 0 |ϕp2(1 − ϕp2)|
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Indices’ Behavior is Robust to Sampling Procedures
Our model accounts for the coevolutionary sampling via 
the interaction between allele frequencies and the infec
tion matrix α, the disease exposure sampling via the dis
ease encounter rate ϕ, and the experimental sampling via the 
sample size n. We can quantify the effect of the three above- 
mentioned sampling effects on the accuracy of inference 
using stochastic simulations. Also, we can assess if the joint 
behavior of the four developed indices allows for discrimin
ating between different infection matrices under the com
bination of coevolutionary, experimental, and disease 
exposure sampling procedures (Fig. 1b,c) (for more details 
see Methods and supplementary text S1, Supplementary 
Material online). First, we explore the indices’ distributions 
over a wide range of minor allele frequencies (hi, pj between 
0.05 and 0.5) and allow for random deviations of the matrix 
coefficients within a tolerance δ, which are reflective of co
evolutionary sampling. These deviations are reflective of 
more quantitative forms of the investigated infection matri
ces and take into account their expected variability in host– 
pathogen interactions. Under coevolutionary sampling, the 
ranges of our IHP, IHS, and I PI indices for the entire 

population are very small for small disease encounter rates. 
Yet, their combination still distinguishes well between differ
ent matrices (Fig. 2, top row). The distributions of the indi
ces’ values become wider when taking a sample from the 
entire population with more or less equal amounts of non
infected and infected individuals (Fig. 2, bottom row). 
Encouragingly, the distributions of indices’ values differ be
tween the different matrices for various disease encounter 
rates (Fig. 2) for population and experimental samples. 
More importantly, there is at least one combination of 
two or more indices (albeit not necessarily linear) for each 
G×G infection matrix, discriminating it from the neutral in
fection matrix (Fig. 2).

We observe a strong dependency between the range 
of possible indices’ values and the disease encounter 
rate ϕ (compare Fig. 2, supplementary figs. S1 and S2, 
Supplementary Material online) which indicates the effect 
of the disease exposure sampling. Consistent with our the
oretical results, the ranges of values for IHS, IPI, and IHP 
are small for low disease encounter rates and increase 
with higher disease encounter rates (supplementary figs. 
S1 and S2, Supplementary Material online). Yet, for all 

Fig. 2. Distribution of values of indices’ pairs comprising ICSA (y axis) and one of the other indices IHS, IPI, or IHP (x axis) for different infection 
matrices (AGFG , AMA, AiGFG , AH , AP , AN ) for a low disease encounter rate (ϕ = 0.05). The population has size N = 100, 000 (population row) 
and a random sample of nH = 1, 006 healthy and nI = 902 infected haploid individuals is taken (sample row). Results are shown for 10,000 si
mulations where h1 ∼ U(0.05, 0.5), p1 ∼ U(0.05, 0.5), and δ = 0.1. The simulations are a randomly selected subset of the 50,000 simulations 
used in the ABC model choice.
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three disease encounter rates the different matrices are 
distinguished by the combination of indices under the 
population sample. As for ϕ = 0.05, we observe that taking 
a fixed sample from the entire population changes the 
range of observed index values in the sample compared 
to the population. This effect depends on the specific com
bination of (host and pathogen) sample sizes (Fig. 2, 
supplementary figs. S3 and S4, Supplementary Material on
line). When we consider a sampling scheme with 5% in
fected and 95% noninfected hosts (keeping the total 
number of samples to 951 hosts) for a disease encounter 
rate ϕ = 0.05, the distribution of indices’ values becomes 
more narrow and more similar to that of the population 
sample. This potentially decreases the extent to which dif
ferent matrices can be discriminated (supplementary fig. 
S4, Supplementary Material online). On the other hand, 
if we consider a sampling scheme with 95% infected and 
5% noninfected hosts (keeping the total number of samples 
to 951 hosts) the range of indices’ values further broadens 
and becomes less similar to the population sample 
(supplementary fig. S3, Supplementary Material online). 
The difference in sample indices’ distributions reflects the 
effect of experimental sampling of infected hosts on top 
of the disease exposure sampling for a low disease encoun
ter rate. Our results exemplify the, so far, largely ignored ef
fects of the disease exposure and experimental sampling in 
natural co-GWAS and the importance of deriving optimal 
sampling schemes to overcome this interplay.

Increasing the infection matrix tolerance threshold (value 
of δ), and thus, allowing for a wider range of more quantita
tive forms of each infection matrix, increases the amount of 
overlap between the indices’ distributions. As a consequence, 
different matrices may be confounded (supplementary fig. 
S5, Supplementary Material online for δ varying between 
0.1 and 0.3). In other words, choosing a low tolerance param
eter generates a more stringent statistical test to disentangle 
between the neutral infection matrix and other matrices. 
This should decrease the rate of false positives (association 
and underlying matrices appearing to be biologically relevant, 
whereas these are, in fact, neutral).

An ABC Framework Allows to Infer the Infection 
Matrices
We then use these simulation results (ϕ = 0.05 and 
δ = 0.1) in an ABC framework to infer the infection 
(G×G) matrix (neutral, MA, GFG,…) for a given associ
ation. Therefore, we use our four indices as ABC summary 
statistics. We consider the interaction between two loci to 
not be biologically relevant for a host–pathogen inter
action if the ABC model choice procedure reveals the neu
tral matrix as the best (or equally best) model. We assess 
the statistical power of ABC model (matrix) choice by run
ning a leave-one-out cross-validation (rejection algorithm, 
tolerance = 0.05) based on randomly choosing 500 simula
tions from all simulations for a given infection matrix. 
For each of these simulations, we infer the best model 
using all simulations for all matrices (50,000 per matrix). 
We demonstrate that our ABC with our four indices as 

summary statistics can discriminate between all matrices 
(Table 2, supplementary tables S3 and S4, Supplementary 
Material online). It discriminates especially well between 
biologically relevant G×G matrices and the neutral matrix 
(under the most stringent threshold, supplementary tables 
S3 and S4, Supplementary Material online). The host resist
ance and the MA matrix can be well discriminated from all 
other matrices, whereas the pathogen infectivity and iGFG 
matrices may still be confounded with other matrices for 
some parts of the explored parameter space (Table 2). 
The pathogen infectivity matrix (AP) is less distinguish
able from the neutral matrix when the disease encounter 
rate (ϕ) is small. Here, one of the pathogen alleles exhibits 
a small frequency and, thus, a large bias in the disease ex
posure and empirical sampling. The inverse GFG matrix is 
hard to discern from other matrices when some of the 
host and pathogen allele frequencies are small. Then, up 
to three out of the four possible host–pathogen associa
tions in the infected compartment are found in low pro
portions in the sample due to the specific structure of 
the matrix. Therefore, the variance in the frequency of 
these associations is higher than for other matrices, which 
in turn increases the likelihood that iGFG matrices appear 
like pathogen infectivity or resistance matrices.

We conclude that explicitly accounting for various sam
pling effects within our ABC simulation framework by 
introducing corresponding parameter priors and given 
sample sizes allows us to disentangle between the different 
infection matrix models (Table 2, supplementary tables S3 
and S4, Supplementary Material online). The statistical 
power of the ABC inference is thus determined by the 
combined effect of the sampling procedures yielding the 
indices’ values.

535 Biologically Relevant G×G Associations between 
Humans and HCV
We now apply our ABC framework to a dataset of human 
diploid host sequences and their infecting HCV strains 
(Ansari et al. 2017) (the infected sample) and 503 diploid 
individuals of European ancestry from the 1,000 genomes 
project (Sudmant et al. 2015; The 1000 Genomes Project 
Consortium 2015) (the noninfected sample). In order 
to limit the confounding effects of population structure, 

Table 2 Results of a leave-one-out ABC (rejection) cross-validation for 
500 randomly chosen simulations per infection matrix under low disease 
encounter rate

Inferred model

True model AN AGFG AMA AiGFG AH AP

AN 458 0 0 0 0 42
AGFG 16 361 24 46 6 47
AMA 0 7 471 22 0 0
AiGFG 2 52 63 244 138 1
AH 0 0 0 7 492 1
AP 114 39 0 0 0 347

For each model 50,000 simulations are produced for h1 ∼ U(0.05, 0.5), 
p1 ∼ U(0.05, 0.5), δ = 0.1, ϕ = 0.05, N = 100, 000, nI = 902 haploid, and nH = 
1,006 haploid.
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we restrict our analysis of the HCV dataset to a subset 
of 451 individuals of European ancestry (PCA and 
fastSTRUCTURE analysis in supplementary figs. S6 and 
S7, Supplementary Material online, respectively, Ansari 
et al. 2017). As previously described (Ansari et al. 2017), 
we convert the viral nucleotide sequence data into single 
amino acid polymorphisms (biallelic SAAPs) data. We filter 
for a minor allele frequency (MAF) >0.2 to maximize the 
power to disentangle between infection matrices. As high
lighted above, below this frequency, several stochastic 
sampling effects significantly decrease the power to pin
point relevant G×G associations. We compute our four 
indices for all possible pairwise associations between 
326,520 human SNPs and 208 viral SAAPs. For the 800 
top associations defined as exhibiting the highest values 
of our indices, we run the ABC model choice between 
the possible six infection matrices (AN, AGFG, AiGFG, 
AMA, AH, AP). Our model choice results in 535 interac
tions, which differ from the neutral matrix based on a 
Bayes factor threshold of two (BF > 2) and for a matrix tol
erance threshold δ = 0.1 (Fig. 3).

We infer the most probable infection matrix 
(supplementary tables S5 to S8, Supplementary Material
online) for each of the 535 associations and summarize 
the estimated infection matrices by index (Fig. 3, 
supplementary figs. S8 and S9, Supplementary Material
online). We find two main groups of associations with 
an estimated GFG matrix (AGFG). One group includes as
sociations between the viral HCV gene nonstructural pro
tein 3 (NS3) and several SNPs on the human chromosome 

6 falling into the MHC region. The second group consists of 
a single association between a SAAP on the HCV gene E2 
and an SNP at the clathrin heavy chain linker domain 
containing 1 (CLHC1) gene on human chromosome 
2. Furthermore, we find several associations with an esti
mated resistance matrix (AH) between SAAPs at various 
viral genes and an SNP at the lymphocyte-specific protein 
1 (LSP1) on chromosome 11. Finally, we also find several 
pathogen infectivity matrices (AP) between 21 SNPs in 
the human genome and 45 SAAPs in the HCV genome. 
We also highlight that we do not find any associations 
which are indicative of a matching-allele (AMA) infection 
matrix, even when lowering the detection threshold 
(higher δ) and considering competing best models 
(supplementary tables S5 to S8, Supplementary Material
online). Analyzing the details of these 535 biologically 
relevant G×G associations, we find few host sites (106), es
pecially exhibiting GFG or resistance matrices, while 
pathogen SAAPs (221) exhibit chiefly infectivity matrices. 
We also compare our results to co-GWAS on the subset 
of 451 European infected individuals (and their 451 
pathogen strains) following the previous analysis (Ansari 
et al. 2017) using plink. All tested associations 
with a high ICSA index are also picked up with our 
Bonferroni corrected co-GWAS (supplementary fig. S10, 
Supplementary Material online). In addition, 68 of these 
candidate associations also appear in the 104 top candi
dates from the Bonferroni corrected results obtained pre
viously for the full dataset (supplementary fig. S11, 
Supplementary Material online, Ansari et al. 2017). We 
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Fig. 3. Genome-to-genome relevant associations from the ABC-model choice for all 535 associations (BF > 2 to the neutral matrix). a) The 535 
associations between host SNPs and pathogen SAAPs colored by the single best infection matrix. b) The 535 associations colored by the most 
informative index. The human chromosomes are shown on the bottom, and the virus contigs on the top. The second circle of lines indicates the 
number of closely linked sites sharing an association (most inner line, a single site, number of sites increasing to the outermost line). Infection 
matrices are color-coded as follows: purple =AGFG , darkgreen =AH , yellow =AP . Indices are coded as lightblue = ICSA, lightgreen = IHP, 
orange = IHS, and purple = IPI.
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conclude that our ABC framework reveals relevant G×G 
associations but is more stringent than co-GWAS studies. 
Using our four indices, which capture different aspects of 
infection matrices, we are also able to reveal new associa
tions which were not previously reported, especially po
tential human resistance alleles to HCV (under GFG and 
resistance matrices) and HCV infectivity alleles (under in
fectivity matrix).

Discussion
We derived four indices to tackle the problem of inferring the 
underlying infection matrix from host–pathogen association 
data. We developed some general predictions on the behav
ior of these indices, established their joint ability to discrim
inate between several infection matrices and used them 
successfully as summary statistics in an ABC framework to re
veal infection matrices in a human host/HCV virus dataset. 
Our theoretical study is not only the first study attempting 
to establish the conceptual aspects of natural co-GWAS 
and the effect of various sampling procedures but also lays 
the ground for a methodological framework to infer the in
fection matrix using natural co-GWA set-ups. The predicted 
biologically relevant G×G interactions would need to be sub
sequently validated experimentally. Our theoretical model is 
based on and summarizes features of existing well-known 
models from epidemiological and coevolutionary theory 
(for example, Kermack and McKendrick 1927; Leonard 
1977; Anderson and May 1982; May and Anderson 1983; 
Agrawal and Lively 2002; Gandon and Michalakis 2002; 
Boots et al. 2009, 2014; Diekmann et al. 2013 and reviews in 
Gandon et al. 2016; Ewald et al. 2020; Buckingham and 
Ashby 2022). The design of our indices allows us to draw in
ferences on the underlying infection matrix (Agrawal and 
Lively 2002; Boots et al. 2014; Dybdahl et al. 2014) and thus 
to optimally jointly analyze host and pathogen genomic in
teractions. In the following, we discuss the additional insights 
obtained in our proof of principle case study on the human– 
HCV interaction, present current limitations of the frame
work and its underlying model, and discuss future extensions 
along with general recommendations for conducting such 
studies in future.

Case Study: European Humans–HCV Interaction
As a proof of principle, we specifically present results on 
the interaction between European humans and HCV. 
Therefore, we tuned our method to study a sample size 
of 451 infected diploid humans (and their respective viral 
strains) and 503 noninfected European humans, and a 
known disease encounter rate of 0.05 (slightly higher 
than the disease prevalence of ∼3% previously reported 
Mohd Hanafiah et al. 2013; Petruzziello et al. 2016).

Inferred interaction matrices. We confirm a large number 
of associations between human and viral genes which 
were previously detected (Ansari et al. 2017). All observed 

associations at the MHC on chromosome 6 are associated 
with one viral site located at position 1,444 on the NS3 
gene. Most likely, all these human sites are linked to alleles 
at the HLA genes as a result of high amount of linkage dis
equilibrium across the region (Bakker et al. 2006). HLA 
genes play a role in the adaptive immune response as 
they determine which viral peptides are presented to T 
cells. This process can drive viral evolution and result in 
the emergence of viral escape mutations, which have 
been previously identified for the NS3 gene (Merani 
et al. 2011; Ansari et al. 2017). We further detected a 
GFG interaction between the CLHC1 gene with an amino 
acid in the HCV gene E2. There is some empirical evidence 
that small interfering RNA-mediated clathrin heavy chain 
depletion affects endocytosis of HCV (Blanchard et al. 
2006; Coller et al. 2009). Therefore, we speculate that the 
CLHC1 gene may be involved in such a process, and the in
ferred GFG-matrix might be a result of this process. 
Additionally, we found a putative resistance allele at the 
LSP1 gene, which is an F-actin-binding protein. This pro
tein is involved in the regulation of various immune system 
functions, including lymphocyte activation, proliferation, 
and migration (Pulford et al. 1999). It also has been shown 
to play a role in endocytosis and transendothelial migra
tion of leukocytes, allowing these to be recruited to the 
sites of inflammation (Liu et al. 2005; Walther et al. 
2006). Studies demonstrating that the depletion of LSP1 
significantly reduces the rate of endocytosis of HIV parti
cles (Chauhan et al. 2014; Chauhan and Khandkar 2015) 
could suggest that this protein may also play a role in 
the endocytosis of HCV. On a side note, as for GWAS for 
host resistance, a significant allele association with the sta
tus of infection (infected versus uninfected) which would 
be inferred as a host resistance matrix, can also be inter
preted as a locus significantly determining disease trans
mission (for example a locus enhancing the behavioral 
exposure to the disease). As mentioned above, empirical 
evidence for LSP1 rather points to a biological role of 
this gene in the infection mechanism of HCV.

Inferred matrices and HCV—European humans 
coevolution. Despite likely coevolving with humans over 
thousands of years in Africa, HCV has a very recent history 
of infection and spreading in the European human popu
lation (supplementary fig. S12, Supplementary Material
online, Drummond et al. 2005; Ebranati et al. 2021). 
Therefore, the biologically most relevant SNP-SAAP asso
ciations should be interpreted in the light of the HCV virus 
adapting to existing standing genetic variation in the 
European population within the (approximately) last 150 
years. Experimental results from a bacteria–phage co
evolution interaction (Hall et al. 2011) indicate that initial 
coevolutionary dynamics are characterized by rapid fix
ation of advantageous alleles in hosts and pathogens 
(arms race dynamics Bergelson et al. 2001). The dynamics 
are then replaced by trench warfare dynamics (Stahl et al. 
1999) with the maintenance of two or more alleles at the 
coevolving genes by balancing selection (Tellier et al. 
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2014). Our inferred asymmetric matrices (host resistance, 
pathogen infectivity, and GFG) likely indicate that we cap
ture the initial dynamics of the interaction between hu
mans and HCV in Europe. Asymmetric matrices are 
more likely to generate arms race dynamics, especially 
when population sizes are small (Agrawal and Lively 
2002; Tellier and Brown 2007; Tellier et al. 2014). In this 
light, we interpret the finding of a resistance matrix at 
the LSP1 gene as an indication that resistance to HCV 
may be segregating in the human European population. 
Several mutations in the virus populations have likely 
been selected for overcoming this resistance allele (green 
lines in Fig. 3). In addition, several SAAPs with inferred in
fectivity matrices likely indicate that strains of HCV exhibit 
mutations allowing them to infect and match several host 
genes and alleles. In other words, there are virus strains 
with different infectivity ranges. Finally, the inferred GFG 
interactions indicate that the virus has evolved to over
come host recognition alleles at several MHC genes and 
at one gene on chromosome 2 (CLHC1). These human al
leles likely provided initial resistance to HCV at the onset 
of the epidemics, which were overcome by subsequent 
mutations in the virus.

Current Limitations of Our Inference Framework
In the following, we discuss several main limitations of our 
current inference framework due to modeling assumptions: 
the choice of a simplified interaction model integrating 
over various types of epidemiological dynamics and focusing 
on the resulting pattern rather than the underlying process, 
the assumption of haploid hosts and pathogens, the sampling 
set-up, and allele frequencies at biallelic loci, and not account
ing for epistatic interactions. We suggest that our results are 
rather conservative with a low rate of false negatives but likely 
missing possible relevant associations.

Disease exposure rate and the disease transmission 
process. We specifically focus on random disease transmis
sion and low disease encounter rate which likely best de
scribe HCV transmission dynamics in Europe (Mohd 
Hanafiah et al. 2013; Petruzziello et al. 2016). This allows 
us to account for the effect of the disease exposure sam
pling on the distribution of allele frequencies in the popu
lation and our experimental samples without specifying a 
corresponding wide prior for the disease encounter rate in 
the ABC. Our use of priors for host and pathogen allele fre
quencies considers that in empirical data the “true” allele 
frequencies prior to the infection process (hi and pj in 
our model) are unknown. The observed sample allele fre
quencies represent the outcome of the joint interaction 
of disease encounter rate, the “true” but hidden allele fre
quencies and the infection matrix. We acknowledge that 
disease encounter rates might be less well-known for 
host–pathogen interactions involving nonmodel species. 
One way to tackle this limitation for nonmodel plant 
host–pathogen interactions would be to obtain estimates 
for the range of disease encounter rates from field data and 

include this range as an additional prior into the ABC si
mulations. However, based on our analytical results, we 
only expect this approach to be successful within our cur
rent framework if the corresponding estimated range of 
the disease encounter rate is relatively narrow.

Our simplified model summarizes the features of classic 
epidemiological (May and Anderson 1983; Gandon and 
Michalakis 2002; Boots et al. 2014; Buckingham and 
Ashby 2022) and coevolutionary (Leonard 1977; Tellier 
and Brown 2007; Tellier et al. 2014) models between bial
lelic hosts and biallelic pathogens at a single time point of 
the coevolutionary trajectory. Four main biological factors 
are not yet accounted for. First, additional epidemiological 
features more common to human diseases, such as 
large overlap between age classes and long-term immune 
memory, would decrease the statistical power of our 
ABC framework (similarly to decreasing the power of 
co-GWAS). Nonetheless, regarding the analysis of the 
HCV data, such bias is unlikely, as the incidence of the dis
ease is rare, so only a few human individuals may exhibit 
such a memory effect. Second, we also acknowledge that 
our model is rather suited to study endemic diseases which 
do not present large variations of the disease encounter 
rate in time, as is likely the case for HCV. Third, our model 
does not suppose any interaction between the genetic 
composition of the host population (host allele frequen
cies) and the disease transmission, as we ignore the so- 
called epidemiological feedback (May and Anderson 
1983; Boots et al. 2014; Buckingham and Ashby 2022). In 
an epidemiological setup, host and parasite allele frequen
cies do determine (in part) disease spread and the severity 
of an epidemic. As a result, some parts of our simulated 
parameter space may be unrealistic, and the efficiency of 
the ABC simulations could be improved by simulating a 
smaller parameter space with hyper-priors linking allele 
frequencies and disease encounter rate. However, the na
ture of the epidemiological feedback depends on the 
pathogen and host biology and genetics, and it is difficult 
to cover all cases in our proof of concept paper. Indeed, we 
suggest that for diseases with low disease incidence and 
peculiar transmission routes, such as HCV, the disease en
counter rate is likely determined by biological (and envir
onmental) factors largely independent of the host 
resistance composition (Tellier et al. 2014; Buckingham 
and Ashby 2022). Furthermore, there are numerous theor
etical possibilities linking infection matrices and disease in
cidence, especially if we consider that several genes may be 
involved in determining host resistance to various parasite 
loci (epistasis) and loci can be multiallelic (more than bial
lelic). Thus, we conveniently (and to avoid bias) design our 
ABC framework (i.e. define priors) to be agnostic vis-à-vis 
the epidemiological dynamics. Fourth, we do not account 
for the possible host tolerance to infection or high parasite 
virulence of deadly diseases that kill hosts before these can 
be sampled. This latter case would present deviations from 
our model as the disease incidence does not reflect the 
true infection rates. The number of infected hosts would 
be underrepresented, thus biasing our indices and 
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decreasing the statistical power of our ABC method. Note, 
however, that for some human diseases, pathogen strains 
can be sampled from dead bodies using ancient DNA tech
niques, which then would give information on the com
position of the infected compartment. We are currently 
extending the modeling framework to study fast-changing 
devastating epidemics under a realistic epidemiological 
model.

Diploid host and dominance effect. A second critical point 
of our model is to assume the codominance of heterozy
gote alleles in the host with regard to the haploid pathogen 
genotype. We followed the previous haploid treatment of 
co-GWAS (Ansari et al. 2017) by duplicating the pathogen 
strain for each human diploid genome and performing all 
analyses on a haploid association model. This assumption 
simplifies our equations, avoids introducing a dominance 
parameter, and allows us to compare our results directly 
with those from previous co-GWAS. Nevertheless, the co
dominance assumption introduces noise in the statistical 
association between host and pathogen alleles and de
creases the statistical power to discriminate neutral from 
nonneutral infection matrices. In other words, we may 
miss some relevant associations hidden by a host domin
ance effect for resistance or susceptibility.

Sample size and allele frequencies. We follow previous 
GWAS and co-GWAS approaches and assume sufficiently 
large sample sizes (several hundred individuals) to allow 
the detection of significant associations. As some of our in
dices rely on estimating the allele frequencies in the nonin
fected subsample and the infected subsample with 
comparatively small error, obtaining a sample that well re
flects the population frequencies of genotypes/phenotypes 
in the entire population is crucial. Specifically, if the disease 
encounter rate is small, it is important to sample the in
fected part of the population well enough. Conversely, if 
the disease encounter rate is high, sufficient sampling of 
the noninfected part of the population becomes import
ant. This emphasizes the importance of accounting for 
the interaction between sampling size and disease preva
lence when devising sampling schemes in co-GWAS stud
ies. Especially low sample sizes are very likely to produce 
biased allele and association frequencies in the sample 
and, hence, erroneous infection matrix estimates.

An inherent difficulty for any co-GWAS and our ABC is 
to confidentially detect associations which involve alleles 
with low frequencies. Therefore, we conservatively re
stricted our testing to loci with a MAF >0.2 to avoid excess 
false positives. However, coevolutionary dynamics can 
transiently decrease allele frequencies or maintain alleles 
at low frequencies as a result of negative indirect frequency- 
dependent selection (Tellier and Brown 2007; Tellier et al. 
2014; MacPherson et al. 2018). The chosen high MAF 
means that we also are less likely to detect genes under 
arms race dynamics with very high or very low allele fre
quencies, while we overrepresent alleles at intermediate 
frequencies (possibly under trench warfare dynamics or 

balancing selection). Therefore, we speculate that our 
ABC method can be further improved by incorporating 
sample allele frequencies as additional summary statis
tics and using association data from several time points. 
We expect the latter to help better track the allele fre
quency changes over time, which directly result from 
the coevolutionary dynamics and the underlying infec
tion matrix.

Two further current limitations of our model (and all 
co-GWAS) are multilocus infection matrices and epistatic ef
fects. We classify sites as being biallelic loci for convenience in 
building 2×2 interaction matrices and to allow comparison 
to previous co-GWAS results (Ansari et al. 2017). While the
oretically, it is possible to include more than two alleles per 
site, the number of parameters of the infection matrix to 
be estimated may become prohibitive beyond a 3×3 matrix. 
We currently duplicate triallelic sites into different combina
tions of biallelic sites, which likely reduces the statistical 
power to detect an association if these alleles present differ
ent resistance/infectivity effects, especially under epistatic as
sociations. Indeed, epistatic interactions between several loci 
have been shown to underlie disease resistance phenotypes 
in species such as Daphnia (Luijckx et al. 2013). By integrating 
such knowledge of epistatic interactions, the results of the 
co-GWAS could recently be improved, and additional genes 
of interactions discovered (Dexter et al. 2023). Integrating 
time-sampled data, additional summary statistics, and the ef
fect of epistasis (for biallelic and triallelic sites) between host 
(and pathogen) loci into our framework constitute the topic 
of future work.

Future Extensions of the Current Framework
Time-series genomic data. We speculate that extending 
our inference framework to include data sampled from dif
ferent time points can improve the accuracy to elucidate 
the speed and timing of coevolution and changes in the 
G×G interactions at the genetic level. One key prediction 
from coevolutionary theory is that due to various stochas
tic and selective processes, the number of genes under co
evolution and the corresponding infection matrices are 
subject to change over time (Boots et al. 2014; Dybdahl 
et al. 2014) with varying degrees of asymmetry (Agrawal 
and Lively 2002; Gandon and Michalakis 2002). This, in 
turn, generates different coevolutionary dynamics in 
time (arms race and trench warfare dynamics, respectively, 
Gandon et al. 2008; Tellier et al. 2014). Having data from 
different time points at hand likely helps to track more ac
curately allele and association frequencies over time. We 
speculate that such temporally resolved genomic data 
help to better characterize the coevolutionary cycles 
over time and, thus, to narrow down the potential param
eter space generating such dynamics and, ultimately, to 
identify potential shifts in the interaction matrices over 
time. In the long term, coevolution between HCV and 
other human populations, SNP × SAAP interactions may 
be characterized by infection matrices promoting trench 
warfare dynamics or balancing selection. These include 
(i) symmetric MA interactions, or (ii) asymmetric GFG 
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interactions with the necessary, but not sufficient (Tellier 
and Brown 2007; Tellier et al. 2014) condition of costs of 
resistance and infectivity existing at these coevolving 
loci. Applying our inference framework to other diseases 
with a range of short to long-term coevolutionary histories 
would shed light on the speed of coevolution between hu
mans and their viruses (Ghafari et al. 2021) and the under
lying coevolutionary dynamics.

Accounting for population structure. It is well known from 
the GWAS literature that spatial structure in the host and 
pathogen samples can affect and distort the power to detect 
associations. Therefore, we restricted our analysis to a single 
population (European) without any obvious population sub
structure, especially between infected and noninfected hosts 
(supplementary figs. S6 and S7, Supplementary Material on
line). Our results align with and are more conservative than 
the previous co-GWAS (Ansari et al. 2017) on the same data
set (supplementary figs. S10 and S11, Supplementary 
Material online). Therefore, we are confident that our frame
work is conservative and stringent and exhibits a low rate of 
false positives. In addition, recent studies demonstrate the 
usefulness of using local population rather than widespread 
sampling in a GWAS setting (Gloss et al. 2022). Accounting 
for spatial structure covariates and kinship matrix in our 
ABC framework is the topic of future work.

In conclusion, we built an ABC integrative method 
based on four indices as summary statistics. These indices 
combine ideas from host or pathogen GWAS with those of 
host–pathogen co-GWAS and additional information 
from noninfected hosts. Our framework is based on a 
widely applicable theoretical infection model. It also con
siders various sampling procedures defining observed 
host and pathogen allele frequencies in empirical samples, 
which allows us to define a threshold for detecting bio
logically relevant G×G associations in a Bayesian frame
work. While the current framework is incomplete, it lays 
the foundation for a more theoretically motivated investi
gation of the limits and strengths of co-GWAS studies and 
tackles the long-standing problem of inferring the inter
action matrix underlying host–pathogen interactions. In 
general, the ideas of our framework are not limited to 
studying host–pathogen interactions, but also applicable 
to other G×G interactions, such as between hosts and mu
tualistic symbionts or between chloroplasts/mitochon
dria × nuclear genes interactions.

Methods
Definition of Indices
The ICSA index is calculated based on the frequencies of 
host/pathogen genotype combinations in the infected 
subpopulation/sample. We define the frequency of host 
genotype i infected by pathogen genotype j among all in
fected individuals as f̃ ij (i, j ∈ [1, 2]). The ICSA is, therefore, 
utilizing information which is contained in natural 

co-GWAS data.

ICSA =
f̃11 f̃22 − f̃12 f̃21

f̅1

􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌
, (4) 

By analogy with the linkage disequilibrium measure in 
population genetics, we normalize the index by the square 
root of the product of all infected host and pathogen allele 
frequencies.

f̅1 =
�������������������������������������������

( f̃11 + f̃12)( f̃21 + f̃22)( f̃11 + f̃21)( f̃12 + f̃22)
􏽱

. (5) 

We define the genotype frequencies of uninfected hosts of 
type i in the population/sample as fiz. Individuals can be 
uninfected due to two reasons: (i) they have not been ex
posed to the pathogen fi0, or (ii) they had a pathogen en
counter but resisted infection fi3. We lump these two 
frequencies into a single frequency fiz as in a natural popu
lation it is usually impossible to tell apart the difference.

The IHS, I PI, and IHP indices are defined as follows:

IHS =
( f11 + f12)f2z − ( f21 + f22)f1z

f̅2

􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌, (6) 

I PI =
f12f22 − f11f21

f̅2

􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌, (7) 

IHP =
f12f2z − f21f1z

f̅2

􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌, (8) 

with

f̅2 = ( f 11 + f 12 + f 1z)( f 21 + f 22 + f 2z). (9) 

We derived expressions for these indices for a single point 
in time given the initial host genotype frequencies hi, 
pathogen genotype frequencies pj, a disease encounter 
rate ϕ, and a given infection matrix α (see 
supplementary text S1, Supplementary Material online).

Stochastic Simulations
Next, we assessed by stochastic simulations the effect of 
three types of stochastic processes on the behavior of the 
indices for all matrices in Table 1: (i) varying host and 
pathogen alleles frequencies and deviations of the matrix 
elements from the extreme values 0 and 1, (ii) random sam
pling of a fixed number nH healthy and nI infected indivi
duals from a population of size N, and (iii) small 
(ϕ = 0.05), intermediate (ϕ = 0.5) or large disease encoun
ter rates (ϕ = 0.95). The simulation scheme worked as fol
lows. For a given matrix, we first randomly chose one of the 
possible assignments of α values (0 or 1) to the matrix ele
ments αij (two possibilities for AMA, AH, AP and four 
possibilities for AGFG, AiGFG, see supplementary text S1, 
Supplementary Material online). Second, after assigning 
0s or 1s to the matrix elements, we replaced each element 
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αij = 1 by randomly drawing a value from a corresponding 
uniform distribution U [1−δ,1]. Equally, we replaced each 
element αij = 0 by drawing from a uniform distribution 
U[0,δ] (supplementary text S1, Supplementary Material on
line). The initial host frequencies h1 and pathogen p1 for 
each simulation are both independently drawn from a uni
form distribution U(0.05, 0.5). Based on the resulting ma
trix and initial host and pathogen frequencies, we 
calculated the frequencies of all possible infected fij and 
healthy fiz host phenotypes in the entire population and 
the respective subpopulation ( f̃ ij for infected, f̃ iz for 
healthy) (equations in supplementary table S2, 
Supplementary Material online). We then randomly picked 
a sample of nI = 902 haploid infected individuals (drawn 
from a multinomial distribution 
Mult(nI, f̃ 11, f̃ 12, f̃ 21, f̃ 22)) and a sample nH = 1, 006 hap
loid healthy individuals (drawn from a binomial distribu
tion B(nH, f̃ 1z)). These sample sizes have been chosen to 
reflect the sample sizes for our empirical dataset. Based 
on recommendations for ABC simulation of a multidimen
sional parameter space (Csillery et al. 2012) of dimension six 
(frequency of host allele 1, frequency of pathogen allele 1, 
and the four infection matrix coefficients with priors values 
constrained by the matrix type and the value of δ), we then 
generated 50,000 simulations for each matrix for all pos
sible combinations of ϕ ∈ {0.05, 0.5, 0.95} and 
δ ∈ {0.1, 0.2, 0.3}.

ABC Leave-One-Out Cross-Validation for Model 
Selection
We first run a leave-one-out cross-validation to test the 
suitability of ABC model choice, using our four indices as 
summary statistics, to distinguish between different infec
tion matrices. Leave-one-out cross-validation was run sep
arately for each combination of ϕ and δ for a 
cross-validation sample of size 500 using the function 
cv4postpr in the R-package abc (rejection algorithm, 
tolerance = 0.05) (Csillery et al. 2012). Note that the 
ABC tolerance is here the threshold for accepting simula
tions in the ABC framework, and is not related to the par
ameter δ which accounts for more quantitative forms of 
the investigated infection matrices. As the parameters 
were tuned for the HCV dataset, we then reused this simu
lated dataset for inference from real data.

Application to Human Data
In the next step, we combined two existing human datasets 
to apply and test our framework. For the infected sample, 
we used human genome-wide genotype data and HCV 
whole-genome sequence data from Ansari et al. (2017). 
These data were collected from a total of 541 patients in
fected by HCV genotypes 2 and 3. We only used a subset 
of 451 humans of European ancestry to prevent confound
ing effects of population structure. For the pathogen gen
ome information, we used the viral (nucleotide and 
protein) data from Ansari et al. (2017) from NCBI 
GenBank (accessions KY620313-KY620880). Following 

Ansari et al. (2017), we generated whole-genome viral con
sensus sequences (nucleotide and protein) for each patient 
using MAFFT (v.7.429) (Katoh et al. 2002). Future details of 
how we processed the virus data for our analysis are given in 
supplementary text S1, Supplementary Material online. For 
the noninfected sample, we used genotype data from the 
1,000 Genomes Project Phase 3 (The 1000 Genomes 
Project Consortium 2015). We used the 503 samples 
from five subpopulations of European ancestry and there
fore, retrieved vcf-data from 91 individuals from England 
and Scotland (GBR), 99 Finnish individuals (FIN), 99 Utah 
residents with Northern and Western European ancestry 
(CEU), 107 Spanish individuals (IBS), and 107 Italian indivi
duals (TSI) for a total of 503 genomes (details in 
supplementary text S1, Supplementary Material online). 
In order to check for population stratification in the in
fected and uninfected European human sample, a 
fastSTRUCTURE analysis was conducted using default op
tions (Raj et al. 2014).

Co-GWAS
We run a natural co-GWAS with PLINK2 (Purcell et al. 2007; 
Chang et al. 2015) on the data using a logistic regression 
with the firth-fallback option. This analysis assumes an 
additive genetic model, excluding dominance effects. For 
each regression, we used the presence of a particular amino 
acid at a given position in the viral alignment as a response 
variable and the genotype at a given human SNP as the 
genotype. To account for multiple testing, we calculated 
several P-value adjustments using the --adjust option 
of PLINK2. We incorporated sex, human PC1–PC3 and virus 
PC1–PC10 as covariates in the PLINK co-GWAS.

Index Calculation with Application to the HCV Data
We obtained frequencies for each host–virus association 
from the infected human dataset using PLINK2 and 
vcftools v0.1.17 (Danecek et al. 2011). We also extracted 
the frequencies of alleles in the noninfected human sub
sample. Combining these frequencies, we calculated all 
of our four indices using equations (4), (6), (7), and (8) 
with customized R-scripts. After that, we retrieved a sum
mary table with the top outlier associations for each index.

Model Choice for the Top Association Candidates
We selected the associations with the 200 highest values 
for each of our indices from the human/HCV dataset. 
For each of these 800 associations, we run ABC model 
choice using the function postpr(…,tol=0.05, 
method=“rejection”) from the R-package abc 
v.2.2.1 (Csillery et al. 2012) and using all matrix simulations 
for ϕ = 0.05, δ = 0.1 and for a sample of nH = 1, 006 
healthy and nI = 902 infected individuals. Based on the 
model choice results we assigned a nonneutral matrix to 
a given association whenever the model with the highest 
Bayes factor was a single nonneutral model/matrix, and 
the Bayes factor compared to the neutral matrix was larger 
than 2.
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Supplementary material is available at Molecular Biology 
and Evolution online.
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