49 research outputs found

    Developing Telemental Health Partnerships Between State Medical Schools and Federally Qualified Health Centers: Navigating the Regulatory Landscape and Policy Recommendations

    Full text link
    BackgroundFederally Qualified Health Centers (FQHCs) deliver care to 26 million Americans living in underserved areas, but few offer telemental health (TMH) services. The social missions of FQHCs and publicly funded state medical schools create a compelling argument for the development of TMH partnerships. In this paper, we share our experience and recommendations from launching TMH partnerships between 12 rural FQHCs and 3 state medical schools.ExperienceThere was consensus that medical school TMH providers should practice as part of the FQHC team to promote integration, enhance quality and safety, and ensure financial sustainability. For TMH providers to practice and bill as FQHC providers, the following issues must be addressed: (1) credentialing and privileging the TMH providers at the FQHC, (2) expanding FQHC Scope of Project to include telepsychiatry, (3) remote access to medical records, (4) insurance credentialing/paneling, billing, and supplemental payments, (5) contracting with the medical school, and (6) indemnity coverage for TMH.RecommendationsWe make recommendations to both state medical schools and FQHCs about how to overcome existing barriers to TMH partnerships. We also make recommendations about changes to policy that would mitigate the impact of these barriers. Specifically, we make recommendations to the Centers for Medicare and Medicaid about insurance credentialing, facility fees, eligibility of TMH encounters for supplemental payments, and Medicare eligibility rules for TMH billing by FQHCs. We also make recommendations to the Health Resources and Services Administration about restrictions on adding telepsychiatry to the FQHCsâ Scope of Project and the eligibility of TMH providers for indemnity coverage under the Federal Tort Claims Act.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149739/1/jrh12323_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149739/2/jrh12323.pd

    Enhancement of Cytotoxicity of Enediyne Compounds by Hyperthermia: Effects of Various Metal Complexes on Tumor Cells

    Get PDF
    Enediyne natural products are a class of compounds that were recognized for their potential as chemotherapeutic agents many years ago, but found to be highly cytotoxic due to their propensity for low thermal activation. Bergman cyclization of the enediyne moiety produces a diradical intermediate, and may subsequently induce DNA damage and account for the extreme cytotoxicity. While difficulties in controlling the thermal cyclization reaction have limited the clinical use of cyclic enediynes, we have previously shown that enediyne activity, and thus toxicity at physiological temperatures can be modulated by metallation of acyclic enediynes. Furthermore, the cytotoxicity of "metalloenediynes" can be potentiated by hyperthermia. In this study, we characterized a suite of novel metallated enediyne motifs that usually induced little or no cytotoxicity when two different human cancer cell lines were treated with the compounds at 37°C, but showed a significant enhancement of cytotoxicity after cells were exposed to moderate hyperthermia during drug treatment. Cultured U-1 melanoma or MDA-231 breast cancer cells were treated with various concentrations of Cu, Fe and Zn complexes of the enediyne (Z)-N,N'-bis[1-pyridyl-2-yl-meth-(E)-ylidene]octa-4-ene-2,6-diyne-1,8-diamine (PyED) and clonogenic survival was assessed to determine the effects of the drugs at 37°C and 42.5°C. Toxicity at 37°C varied for each compound, but hyperthermia potentiated the cytotoxicity of each compound in both cell lines. Cytotoxicity was concentration-, time- and temperature-dependent. Heating cells during drug treatment resulted in enhanced apoptosis, but the role of cell cycle perturbation in the response of the cells to the drugs was less clear. Lastly, we showed that hyperthermia enhanced the number of DNA double-strand breaks (DSBs) induced by the compounds, and inhibited their repair after drug treatment. Thus, thermal enhancement of cytotoxicity may be due, at least in part, to the propensity of the enediyne moiety to induce DSBs, and/or a reduction in DSB repair efficiency. We propose that "tuning" of metalloenediyne toxicity through better-controlled reactivity could have potential clinical utility, since we envision that such compounds could be administered systemically as relatively non-toxic agents, but cytotoxicity could be enhanced in, and confined to a tumor volume when subjected to localized heating

    Characterization and initial demonstration of in vivo efficacy of a novel heat-activated metalloenediyne anti-cancer agent

    Get PDF
    Background: Enediynes are anti-cancer agents that are highly cytotoxic due to their propensity for low thermal activation of radical generation. The diradical intermediate produced from Bergman cyclization of the enediyne moiety may induce DNA damage and cell lethality. The cytotoxicity of enediynes and difficulties in controlling their thermal cyclization has limited their clinical use. We recently showed that enediyne toxicity at 37 °C can be mitigated by metallation, but cytotoxic effects of 'metalloenediynes' on cultured tumor cells are potentiated by hyperthermia. Reduction of cytotoxicity at normothermia suggests metalloenediynes will have a large therapeutic margin, with cell death occurring primarily in the heated tumor. Based on our previous in vitro findings, FeSO4-PyED, an Fe co-factor complex of (Z)-N,N'-bis[1-pyridin-2-yl-meth-(E)-ylidene]oct-4-ene-2,6-diyne-1,8-diamine, was prioritized for further in vitro and in vivo testing in normal human melanocytes and melanoma cells. Methods: Clonogenic survival, apopotosis and DNA binding assays were used to determine mechanisms of enhancement of FeSO4-PyED cytotoxicity by hyperthermia. A murine human melanoma xenograft model was used to assess in vivo efficacy of FeSO4-PyED at 37 or 42.5 °C. Results: FeSO4-PyED is a DNA-binding compound. Enhancement of FeSO4-PyED cytotoxicity by hyperthermia in melanoma cells was due to Bergman cyclization, diradical formation, and increased apoptosis. Thermal enhancement, however, was not observed in melanocytes. FeSO4-PyED inhibited tumor growth when melanomas were heated during drug treatment, without inducing normal tissue damage. Conclusion: By leveraging the unique thermal activation properties of metalloenediynes, we propose that localized moderate hyperthermia can be used to confine the cytotoxicity of these compounds to tumors, while sparing normal tissue

    Epigenetic Mechanisms Regulate Stem Cell Expressed Genes Pou5f1 and Gfra1 in a Male Germ Cell Line

    Get PDF
    Male fertility is declining and an underlying cause may be due to environment-epigenetic interactions in developing sperm, yet nothing is known of how the epigenome controls gene expression in sperm development. Histone methylation and acetylation are dynamically regulated in spermatogenesis and are sensitive to the environment. Our objectives were to determine how histone H3 methylation and acetylation contribute to the regulation of key genes in spermatogenesis. A germ cell line, GC-1, was exposed to either the control, or the chromatin modifying drugs tranylcypromine (T), an inhibitor of the histone H3 demethylase KDM1 (lysine specific demethylase 1), or trichostatin (TSA), an inhibitor of histone deacetylases, (HDAC). Quantitative PCR (qPCR) was used to identify genes that were sensitive to treatment. As a control for specificity the Myod1 (myogenic differentiation 1) gene was analyzed. Chromatin immunoprecipitation (ChIP) followed by qPCR was used to measure histone H3 methylation and acetylation at the promoters of target genes and the control, Myod1. Remarkably, the chromatin modifying treatment specifically induced the expression of spermatogonia expressed genes Pou5f1 and Gfra1. ChIP-qPCR revealed that induction of gene expression was associated with a gain in gene activating histone H3 methylation and acetylation in Pou5f1 and Gfra1 promoters, whereas CpG DNA methylation was not affected. Our data implicate a critical role for histone H3 methylation and acetylation in the regulation of genes expressed by spermatogonia – here, predominantly mediated by HDAC-containing protein complexes

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    A Systems Thinking Approach for Eliciting Mental Models from Visual Boundary Objects in Hydropolitical Contexts: a Case Study from the Pilcomayo River Basin

    Get PDF
    Transboundary collaborations related to international freshwater are critical for ensuring equitable, efficient, and sustainable shared access to our planet’s most fundamental resources. Visual artifacts, such as knowledge maps, functioning as boundary objects, are used in hydropolitical contexts to convey understandings and facilitate discussion across scales about challenges and opportunities from multiple perspectives. Such focal points for discussion are valuable in creating shared, socially negotiated priorities and integrating diverse and often disparate cultural perspectives that naturally exist in the context of international transboundary water resources. Visual boundary objects can also represent the collective mental models of the actor countries and transboundary institutions and encompass their perspectives on the complex hydro-social cycles within specific “problem-shed” regions of the shared resources. To investigate and synthesize these multiple concepts, we developed a novel method of eliciting mental models from visual boundary objects in social-ecological contexts by combining content analysis with theoretical frameworks for boundary objects and systems thinking. Using this method, we analyzed visual boundary objects represented in publicly available documents formally related to decision making in the Pilcomayo River Basin in South America. The Pilcomayo River Basin is a unique case for investigating decision making in international collaboration among represented states, given the unique social and biophysical challenges that have plagued the region for over a century. Using our framework, we were able to develop insight into the collective mental models of stakeholders, organizations, and decision-making institutions, related to priorities, vulnerabilities, and adaptation strategies among the various socioeconomic, cultural, political, and biophysical drivers for different regions and scales of the basin

    BhuR, a Virulence-Associated Outer Membrane Protein of Bordetella avium, Is Required for the Acquisition of Iron from Heme and Hemoproteins

    No full text
    Iron (Fe) is an essential element for most organisms which must be obtained from the local environment. In the case of pathogenic bacteria, this fundamental element must be acquired from the fluids and tissues of the infected host. A variety of systems have evolved in bacteria for efficient acquisition of host-bound Fe. The gram-negative bacterium Bordetella avium, upon colonization of the avian upper respiratory tract, produces a disease in birds that has striking similarity to whooping cough, a disease caused by the obligate human pathogen Bordetella pertussis. We describe a B. avium Fe utilization locus comprised of bhuR and six accessory genes (rhuIR and bhuSTUV). Genetic manipulations of B. avium confirmed that bhuR, which encodes a putative outer membrane heme receptor, mediates efficient acquisition of Fe from hemin and hemoproteins (hemoglobin, myoglobin, and catalase). BhuR contains motifs which are common to bacterial heme receptors, including a consensus FRAP domain, an NPNL domain, and two TonB boxes. An N-terminal 32-amino-acid segment, putatively required for rhuIR-dependent regulated expression of bhuR, is present in BhuR but not in other bacterial heme receptors. Two forms of BhuR were observed in the outer membrane of B. avium: a 91-kDa polypeptide consistent in size with the predicted mature protein and a smaller 82-kDa polypeptide which lacks the 104 amino acids found at the N terminus of the 91-kDa form. A mutation in hemA was engineered in B. avium to demonstrate that the bacterium transports heme into the cytoplasm in a BhuR-dependent manner. The role of BhuR in virulence was established in turkey poults by use of a competitive-infection model
    corecore