49 research outputs found

    Distinct metabolic profile according to the shape of the oral glucose tolerance test curve is related to whole glucose excursion : a cross-sectional study

    Get PDF
    Background: The shapes of the plasma glucose concentration curve during the oral glucose tolerance test are related to different metabolic risk profiles and future risk of type 2 DM. We sought to further analyze the relationship between the specific shapes and hyperglycemic states, the metabolic syndrome and hormones involved in carbohydrate and lipid metabolism, and to isolate the effect of the shape by adjusting for the area under the glucose curve. Methods: One hundred twenty one adult participants underwent a 2-h oral glucose tolerance test and were assigned to either the monophasic (n = 97) or the biphasic (n = 24) group based upon the rise and fall of their plasma glucose concentration. We evaluated anthropometric measures, blood pressure, lipid profile, high-sensitivity C-reactive protein, glycated hemoglobin, insulin sensitivity, beta-cell function, C-peptide, glucagon, adiponectin and pancreatic polypeptide. Results: Subjects with monophasic curves had higher fasting and 2-h plasma glucose levels, while presenting lower insulin sensitivity, beta-cell function, HDL cholesterol, adiponectin and pancreatic polypeptide levels. Prediabetes and metabolic syndrome had a higher prevalence in this group. Glycated hemoglobin, total cholesterol, triglycerides, highsensitivity C-reactive protein and glucagon were not significantly different between groups. After adjusting for the area under the glucose curve, only the differences in the 1-h and 2-h plasma glucose concentrations and HDL cholesterol levels between the monophasic and biphasic groups remained statistically significant. Conclusions: Rates and intensity of metabolic dysfunction are higher in subjects with monophasic curves, who have lower insulin sensitivity and beta-cell function and a higher prevalence of prediabetes and metabolic syndrome. These differences, however, seem to be dependent on the area under the glucose curve

    Esophagogastric junction outflow obstruction successfully treated with laparoscopic Heller myotomy and Dor fundoplication : first case report in the literature

    Get PDF
    BACKGROUND Esophagogastric junction outflow obstruction (EGJOO) is a rare syndrome, characterized by an elevation of the integrated relaxation pressure of the lower esophageal sphincter, not accompanied by alterations in esophageal motility that may lead to the criteria for achalasia. We were unable to find any prior report of the combination of Heller myotomy with anterior partial fundoplication (Dor) as the treatment for EGJOO. We herein report a case of EGJOO treated with laparoscopic Heller myotomy combined with Dor fundoplication. CASE SUMMARY A 26-year-old man presented with a 3-year history of solid dysphagia and a 30-kg weight loss. He was treated with oral nifedipine, isosorbide, and omeprazole, without resolution of symptoms. An upper gastrointestinal series (barium swallow) revealed a “bird’s beak” sign. Esophagogastroduodenoscopy was positive for Los Angeles grade A peptic esophagitis. High-resolution esophageal manometry was compatible with EGJOO. Esophageal pH monitoring showed pathological acid reflux both in orthostatic and decubitus position. An 8-cm laparoscopic Heller myotomy combined with an anterior 220° Dor fundoplication was performed. Solid diet was introduced on postoperative day 2, and the patient was discharged home the same day. At 17-mo follow-up, he reported no symptoms. Barium swallow was compatible with complete radiologic resolution. Both esophageal manometry and upper endoscopy showed normal findings 9 mo after the operation. CONCLUSION Surgical treatment with Heller myotomy and Dor fundoplication is a potential treatment option for EGJOO refractory to medical treatment

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Reptiles of the municipality of Juiz de Fora, Minas Gerais state, Brazil

    Full text link

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    corecore