47 research outputs found

    Scaling-up Memristor Monte Carlo with magnetic domain-wall physics

    Full text link
    By exploiting the intrinsic random nature of nanoscale devices, Memristor Monte Carlo (MMC) is a promising enabler of edge learning systems. However, due to multiple algorithmic and device-level limitations, existing demonstrations have been restricted to very small neural network models and datasets. We discuss these limitations, and describe how they can be overcome, by mapping the stochastic gradient Langevin dynamics (SGLD) algorithm onto the physics of magnetic domain-wall Memristors to scale-up MMC models by five orders of magnitude. We propose the push-pull pulse programming method that realises SGLD in-physics, and use it to train a domain-wall based ResNet18 on the CIFAR-10 dataset. On this task, we observe no performance degradation relative to a floating point model down to an update precision of between 6 and 7-bits, indicating we have made a step towards a large-scale edge learning system leveraging noisy analogue devices.Comment: Presented at the 1st workshop on Machine Learning with New Compute Paradigms (MLNCP) at NeurIPS 2023 (New Orleans, USA

    Neuromorphic object localization using resistive memories and ultrasonic transducers

    Full text link
    Real-world sensory-processing applications require compact, low-latency, and low-power computing systems. Enabled by their in-memory event-driven computing abilities, hybrid memristive-Complementary Metal-Oxide Semiconductor neuromorphic architectures provide an ideal hardware substrate for such tasks. To demonstrate the full potential of such systems, we propose and experimentally demonstrate an end-to-end sensory processing solution for a real-world object localization application. Drawing inspiration from the barn owl’s neuroanatomy, we developed a bio-inspired, event-driven object localization system that couples state-of-the-art piezoelectric micromachined ultrasound transducer sensors to a neuromorphic resistive memories-based computational map. We present measurement results from the fabricated system comprising resistive memories-based coincidence detectors, delay line circuits, and a full-custom ultrasound sensor. We use these experimental results to calibrate our system-level simulations. These simulations are then used to estimate the angular resolution and energy efficiency of the object localization model. The results reveal the potential of our approach, evaluated in orders of magnitude greater energy efficiency than a microcontroller performing the same task

    Optical imaging and spectroscopy for the study of the human brain: status report.

    Get PDF
    This report is the second part of a comprehensive two-part series aimed at reviewing an extensive and diverse toolkit of novel methods to explore brain health and function. While the first report focused on neurophotonic tools mostly applicable to animal studies, here, we highlight optical spectroscopy and imaging methods relevant to noninvasive human brain studies. We outline current state-of-the-art technologies and software advances, explore the most recent impact of these technologies on neuroscience and clinical applications, identify the areas where innovation is needed, and provide an outlook for the future directions

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    Computational method and neuromorphic processor design applied to event-based sensors

    No full text
    L’étude du fonctionnement de notre système nerveux et des mécanismes sensoriels a mené à la création de capteurs événementiels. Ces capteurs ont un fonctionnement qui retranscrit les atouts de nos yeux et oreilles par exemple. Cette thèse se base sur la recherche de méthodes bio-inspirés et peu coûteuses en énergie permettant de traiter les données envoyées par ces nouveaux types de capteurs. Contrairement aux capteurs conventionnels, nos rétines et cochlées ne réagissent qu’à l’activité perçue dans l’environnement sensoriel. Les implémentations de type « rétine » ou « cochlée » artificielle, que nous appellerons capteurs dynamiques, fournissent des trains d’évènements comparables à des impulsions neuronales. La quantité d’information transmise est alors étroitement liée à l’activité présentée, ce qui a aussi pour effet de diminuer la redondance des informations de sortie. De plus, n’étant plus contraint à suivre une cadence d’échantillonnage, les événements créés fournissent une résolution temporelle supérieure. Ce mode bio-inspiré de retrait d’information de l’environnement a entraîné la création d’algorithmes permettant de suivre le déplacement d’entité au niveau visuel ou encore reconnaître la personne parlant ou sa localisation au niveau sonore, ainsi que des implémentations d’environnements de calcul neuromorphiques. Les travaux que nous présentons s’appuient sur ces nouvelles idées pour créer de nouvelles solutions de traitement. Plus précisément, les applications et le matériel développés s’appuient sur un codage temporel de l’information dans la suite d'événements fournis par le capteur.Studying how our nervous system and sensory mechanisms work lead to the creation of event-driven sensors. These sensors follow the same principles as our eyes or ears for example. This Ph.D. focuses on the search for bio-inspired low power methods enabling processing data from this new kind of sensor. Contrary to legacy sensors, our retina and cochlea only react to the perceived activity in the sensory environment. The artificial “retina” and “cochlea” implementations we call dynamic sensors provide streams of events comparable to neural spikes. The quantity of data transmitted is closely linked to the presented activity, which decreases the redundancy in the output data. Moreover, not being forced to follow a frame-rate, the created events provide increased timing resolution. This bio-inspired support to convey data lead to the development of algorithms enabling visual tracking or speaker recognition or localization at the auditory level, and neuromorphic computing environment implementation. The work we present rely on these new ideas to create new processing solutions. More precisely, the applications and hardware developed rely on temporal coding of the data in the spike stream provided by the sensors

    Méthode de calcul et implémentation d’un processeur neuromorphique appliqué à des capteurs évènementiels

    Get PDF
    Studying how our nervous system and sensory mechanisms work lead to the creation of event-driven sensors. These sensors follow the same principles as our eyes or ears for example. This Ph.D. focuses on the search for bio-inspired low power methods enabling processing data from this new kind of sensor. Contrary to legacy sensors, our retina and cochlea only react to the perceived activity in the sensory environment. The artificial “retina” and “cochlea” implementations we call dynamic sensors provide streams of events comparable to neural spikes. The quantity of data transmitted is closely linked to the presented activity, which decreases the redundancy in the output data. Moreover, not being forced to follow a frame-rate, the created events provide increased timing resolution. This bio-inspired support to convey data lead to the development of algorithms enabling visual tracking or speaker recognition or localization at the auditory level, and neuromorphic computing environment implementation. The work we present rely on these new ideas to create new processing solutions. More precisely, the applications and hardware developed rely on temporal coding of the data in the spike stream provided by the sensors.L’étude du fonctionnement de notre système nerveux et des mécanismes sensoriels a mené à la création de capteurs événementiels. Ces capteurs ont un fonctionnement qui retranscrit les atouts de nos yeux et oreilles par exemple. Cette thèse se base sur la recherche de méthodes bio-inspirés et peu coûteuses en énergie permettant de traiter les données envoyées par ces nouveaux types de capteurs. Contrairement aux capteurs conventionnels, nos rétines et cochlées ne réagissent qu’à l’activité perçue dans l’environnement sensoriel. Les implémentations de type « rétine » ou « cochlée » artificielle, que nous appellerons capteurs dynamiques, fournissent des trains d’évènements comparables à des impulsions neuronales. La quantité d’information transmise est alors étroitement liée à l’activité présentée, ce qui a aussi pour effet de diminuer la redondance des informations de sortie. De plus, n’étant plus contraint à suivre une cadence d’échantillonnage, les événements créés fournissent une résolution temporelle supérieure. Ce mode bio-inspiré de retrait d’information de l’environnement a entraîné la création d’algorithmes permettant de suivre le déplacement d’entité au niveau visuel ou encore reconnaître la personne parlant ou sa localisation au niveau sonore, ainsi que des implémentations d’environnements de calcul neuromorphiques. Les travaux que nous présentons s’appuient sur ces nouvelles idées pour créer de nouvelles solutions de traitement. Plus précisément, les applications et le matériel développés s’appuient sur un codage temporel de l’information dans la suite d'événements fournis par le capteur

    AC Kelvin Probe Force Microscopy Enables Charge Mapping in Water

    No full text
    [Image: see text] Mapping charged chemical groups at the solid–liquid interface is important in many areas, ranging from colloidal systems to biomolecular interactions. However, classical methods to measure surface charges either lack spatial resolution or—like Kelvin-probe force microscopy (KPFM)—cannot be applied in aqueous solutions because a DC bias voltage is used. Here, we show that using AC Kelvin probe force microscopy (AC-KPFM), in which the DC bias is replaced with an AC voltage of sufficiently high frequency, the surface potential of spatially fixated, charged surface groups can be mapped in aqueous solution. We demonstrate this with micropatterned, functionalized alkanethiol layers which expose ionized amino- and carboxy-groups. These groups are representative of the charged groups of most biomolecules such as proteins. By adjusting the pH of the solution, the charge of the groups was reversibly altered, demonstrating the electrostatic nature of the measured signal. The influence of the electric double layer (EDL) on the measurement is discussed, and we, furthermore, show how charged, micropatterned layers can be used to spatially direct the deposition of nanoparticles of opposite charge

    Are SNNs really more energy-efficient than ANNs? An in-depth hardware-aware study

    No full text
    International audienceSpiking Neural Networks (SNNs) hold the promise of lower energy consumption in embedded hardware due to their spike-based computations compared to traditional Artificial Neural Networks (ANNs). The relative energy efficiency of this emerging technology compared to traditional digital hardware has not been fully explored. Many studies do not consider memory accesses, which account for an important fraction of the energy consumption, use naive ANN hardware implementations, or lack generality. In this paper, we compare the relative energy efficiency of classical digital implementations of ANNs with novel event-based SNN implementations based on variants of the Integrate and Fire (IF) model. We provide a theoretical upper bound on the relative energy efficiency of ANNs, by computing the maximum possible benefit from ANN data reuse and sparsity. We also use the Eyeriss ANN accelerator as a case study. We show that the simpler IF model is more energy-efficient than the Leaky IF and temporal continuous synapse models. Moreover, SNNs with the IF model can compete with efficient ANN implementations when there is a very high spike sparsity, i.e. between 0.15 and 1.38 spikes per synapse per inference, depending on the ANN implementation. Our analysis shows that hybrid ANN-SNN architectures, leveraging a SNN event-based approach in layers with high sparsity and ANN parallel processing for the others, are a promising new path for further energy savings
    corecore