22 research outputs found

    Granulomatous meningoencephalomyelitis in dogs: A review

    Get PDF
    <p/> <p>Granulomatous meningoencephalomyelitis (GME) is an inflammatory disease of the central nervous system in dogs that is characterised by focal or disseminated granulomatous lesions within the brain and/or spinal cord, non-suppurative meningitis and perivascular mononuclear cuffing. The aetiology of the disease remains unknown, although an immune-mediated cause is suspected. This article reviewed the typical history, clinical signs and pathology of the condition along with current opinions on pathogenesis. The potential differential diagnoses for the disease were discussed along with current treatment options.</p

    Association of biomarkers for human papillomavirus with survival among adults with Barrett high-grade dysplasia and esophageal adenocarcinoma

    Get PDF
    Importance: The presence of high-risk human papillomavirus (HPV) has been associated with a favorable outcome in Barrett high-grade dysplasia (HGD) and esophageal adenocarcinoma (EAC). Nevertheless, the prognostic significance of other HPV-related biomarkers (ie, retinoblastoma protein [pRb], cyclin D1 [CD1], minichromosome maintenance protein [MCM2] and Ki-67) is unknown. Objective: To examine the association between HPV-related biomarkers and survival in adult patients with Barrett HGD and EAC. Design, Setting, and Participants: This retrospective case-control study examined the hypothesis that the HPV-related cell cycle markers (pRb, CD1, and Ki-67) and the viral surrogate marker (MCM2) may be associated with a favorable prognosis in Barrett HGD and EAC. Pretreatment biopsies were used for HPV DNA determination via polymerase chain reaction and immunohistochemistry for the HPV-related biomarkers. Recruitment of patients occurred in secondary and tertiary referral centers, with 151 patients assessed for eligibility. The study period was from December 1, 2002, to November 28, 2017, and the dates of analysis were from September 9, 2011, to November 28, 2017. Main Outcomes and Measures: Disease-free survival and overall survival. Results: Of 151 patients assessed for eligibility, 9 were excluded. Among the 142 patients with Barrett HGD or EAC (126 [88.7%] men; mean [SD] age, 66.0 [12.1] years; 142 [100%] white), 37 were HPV positive and 105 were HPV negative. No association with disease-free survival was noted for pRb, CD1, Ki-67, and MCM2. In regard to overall survival, only low expression of CD1 had a favorable prognosis (hazard ratio [HR], 0.53; 95% CI, 0.30-0.95; adjusted P = .03). All the biomarkers stratified by HPV status showed significant associations with survival. Patients with HPV-positive, low-expression pRb esophageal tumors were associated with a significantly improved disease-free survival compared with the HPV-negative, high-expression Rb tumors (HR, 0.33; 95% CI, 0.12-0.93; adjusted P = .04). Similarly, HPV-positive, low-expression CD1 was associated with a significantly favorable disease-free survival (HR, 0.26; 95% CI, 0.09-0.76; adjusted P = .01), as was HPV-positive, high-expression MCM2 (HR, 0.27; 95% CI, 0.09-0.78; adjusted P = .02). In regard to overall survival, HPV was significantly associated only with low CD1 (HR, 0.38; 95% CI, 0.15-0.94; adjusted P = .04). Conclusions and Relevance: This study's findings suggest that low expression of CD1 appears to be an independent prognostic marker in Barrett HGD and EAC. Human papillomavirus positivity in combination with pRb, CD1, MCM2, and Ki-67 was associated with a survival benefit in esophageal tumors. These findings suggest the possibility of personalization of therapy for Barrett HGD and EAC based on viral status

    Mitochondrial mutations and metabolic adaptation in pancreatic cancer.

    Get PDF
    BACKGROUND: Pancreatic cancer has a five-year survival rate of ~8%, with characteristic molecular heterogeneity and restricted treatment options. Targeting metabolism has emerged as a potentially effective therapeutic strategy for cancers such as pancreatic cancer, which are driven by genetic alterations that are not tractable drug targets. Although somatic mitochondrial genome (mtDNA) mutations have been observed in various tumors types, understanding of metabolic genotype-phenotype relationships is limited. METHODS: We deployed an integrated approach combining genomics, metabolomics, and phenotypic analysis on a unique cohort of patient-derived pancreatic cancer cell lines (PDCLs). Genome analysis was performed via targeted sequencing of the mitochondrial genome (mtDNA) and nuclear genes encoding mitochondrial components and metabolic genes. Phenotypic characterization of PDCLs included measurement of cellular oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) using a Seahorse XF extracellular flux analyser, targeted metabolomics and pathway profiling, and radiolabelled glutamine tracing. RESULTS: We identified 24 somatic mutations in the mtDNA of 12 patient-derived pancreatic cancer cell lines (PDCLs). A further 18 mutations were identified in a targeted study of ~1000 nuclear genes important for mitochondrial function and metabolism. Comparison with reference datasets indicated a strong selection bias for non-synonymous mutants with predicted functional effects. Phenotypic analysis showed metabolic changes consistent with mitochondrial dysfunction, including reduced oxygen consumption and increased glycolysis. Metabolomics and radiolabeled substrate tracing indicated the initiation of reductive glutamine metabolism and lipid synthesis in tumours. CONCLUSIONS: The heterogeneous genomic landscape of pancreatic tumours may converge on a common metabolic phenotype, with individual tumours adapting to increased anabolic demands via different genetic mechanisms. Targeting resulting metabolic phenotypes may be a productive therapeutic strategy

    Genomic insights into the origin of farming in the ancient Near East

    Get PDF
    We report genome-wide ancient DNA from 44 ancient Near Easterners ranging in time between ~12,000 and 1,400 BC, from Natufian hunter–gatherers to Bronze Age farmers. We show that the earliest populations of the Near East derived around half their ancestry from a ‘Basal Eurasian’ lineage that had little if any Neanderthal admixture and that separated from other non-African lineages before their separation from each other. The first farmers of the southern Levant (Israel and Jordan) and Zagros Mountains (Iran) were strongly genetically differentiated, and each descended from local hunter–gatherers. By the time of the Bronze Age, these two populations and Anatolian-related farmers had mixed with each other and with the hunter–gatherers of Europe to greatly reduce genetic differentiation. The impact of the Near Eastern farmers extended beyond the Near East: farmers related to those of Anatolia spread westward into Europe; farmers related to those of the Levant spread southward into East Africa; farmers related to those of Iran spread northward into the Eurasian steppe; and people related to both the early farmers of Iran and to the pastoralists of the Eurasian steppe spread eastward into South Asia

    Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer

    Get PDF
    Pancreatic ductal adenocarcinoma is a lethal cancer with fewer than 7% of patients surviving past 5 years. T-cell immunity has been linked to the exceptional outcome of the few long-term survivors1,2, yet the relevant antigens remain unknown. Here we use genetic, immunohistochemical and transcriptional immunoprofiling, computational biophysics, and functional assays to identify T-cell antigens in long-term survivors of pancreatic cancer. Using whole-exome sequencing and in silico neoantigen prediction, we found that tumours with both the highest neoantigen number and the most abundant CD8+ T-cell infiltrates, but neither alone, stratified patients with the longest survival. Investigating the specific neoantigen qualities promoting T-cell activation in long-term survivors, we discovered that these individuals were enriched in neoantigen qualities defined by a fitness model, and neoantigens in the tumour antigen MUC16 (also known as CA125). A neoantigen quality fitness model conferring greater immunogenicity to neoantigens with differential presentation and homology to infectious disease-derived peptides identified long-term survivors in two independent datasets, whereas a neoantigen quantity model ascribing greater immunogenicity to increasing neoantigen number alone did not. We detected intratumoural and lasting circulating T-cell reactivity to both high-quality and MUC16 neoantigens in long-term survivors of pancreatic cancer, including clones with specificity to both high-quality neoantigens and predicted cross-reactive microbial epitopes, consistent with neoantigen molecular mimicry. Notably, we observed selective loss of high-quality and MUC16 neoantigenic clones on metastatic progression, suggesting neoantigen immunoediting. Our results identify neoantigens with unique qualities as T-cell targets in pancreatic ductal adenocarcinoma. More broadly, we identify neoantigen quality as a biomarker for immunogenic tumours that may guide the application of immunotherapies

    Abstracts from the NIHR INVOLVE Conference 2017

    Get PDF
    n/

    Targeting DNA Damage Response and Replication Stress in Pancreatic Cancer

    Get PDF
    Background and aims: Continuing recalcitrance to therapy cements pancreatic cancer (PC) as the most lethal malignancy, which is set to become the second leading cause of cancer death in our society. The study aim was to investigate the association between DNA damage response (DDR), replication stress and novel therapeutic response in PC to develop a biomarker driven therapeutic strategy targeting DDR and replication stress in PC. Methods: We interrogated the transcriptome, genome, proteome and functional characteristics of 61 novel PC patient-derived cell lines to define novel therapeutic strategies targeting DDR and replication stress. Validation was done in patient derived xenografts and human PC organoids. Results: Patient-derived cell lines faithfully recapitulate the epithelial component of pancreatic tumors including previously described molecular subtypes. Biomarkers of DDR deficiency, including a novel signature of homologous recombination deficiency, co-segregates with response to platinum (P &lt; 0.001) and PARP inhibitor therapy (P &lt; 0.001) in vitro and in vivo. We generated a novel signature of replication stress with which predicts response to ATR (P &lt; 0.018) and WEE1 inhibitor (P &lt; 0.029) treatment in both cell lines and human PC organoids. Replication stress was enriched in the squamous subtype of PC (P &lt; 0.001) but not associated with DDR deficiency. Conclusions: Replication stress and DDR deficiency are independent of each other, creating opportunities for therapy in DDR proficient PC, and post-platinum therapy

    DNA methylation patterns identify subgroups of pancreatic neuroendocrine tumors with clinical association

    Get PDF
    Here we report the DNA methylation profile of 84 sporadic pancreatic neuroendocrine tumors (PanNETs) with associated clinical and genomic information. We identified three subgroups of PanNETs, termed T1, T2 and T3, with distinct patterns of methylation. The T1 subgroup was enriched for functional tumors and ATRX, DAXX and MEN1 wild-type genotypes. The T2 subgroup contained tumors with mutations in ATRX, DAXX and MEN1 and recurrent patterns of chromosomal losses in half of the genome with no association between regions with recurrent loss and methylation levels. T2 tumors were larger and had lower methylation in the MGMT gene body, which showed positive correlation with gene expression. The T3 subgroup harboured mutations in MEN1 with recurrent loss of chromosome 11, was enriched for grade G1 tumors and showed histological parameters associated with better prognosis. Our results suggest a role for methylation in both driving tumorigenesis and potentially stratifying prognosis in PanNETs

    Human papillomavirus infection in esophageal squamous cell carcinoma and esophageal adenocarcinoma : a concise review

    No full text
    The causal link between high-risk human papillomavirus (hr-HPV) infection and cervical, anogenital, and some oropharyngeal malignancies has been established by both molecular and epidemiological data. The association between HPV and esophageal squamous cell carcinoma (ESCC) remains controversial, as is the true prevalence of HPV infection in ESCC. The wide range in reported rates reflects variability in the primary literature, with some larger scale case–control studies suggesting the infection rates range from 0% to 78%. Interactions between HPV and the Barrett’s metaplasia–dysplasia–carcinoma sequence have been explored, and these studies have shown some conflicting data. Overall, systematic reviews have reported the prevalence of HPV-positive DNA in esophageal adenocarcinoma patients of between 13% and 35%. Postulated reasons for discrepancies in HPV prevalence rates in esophageal cancer include variations in testing methodology and assay sensitivities; technical issues, including the lack of a gold-standard primer; types of specimens utilized (fresh-frozen versus formalin-fixed tissue); geographical variation; cross-contamination; and small sample sizes. Thus, efforts must be undertaken to (1) standardize HPV testing, ideally in a central laboratory and utilizing tests that detect viral transcriptional activity; (2) avoid cross-contamination; and (3) recruit large numbers of patients to accurately ascertain HPV rates in esophageal malignancy
    corecore